【题目】如图,已知在△ABC中,∠ACB=90°,AC=BC,∠CAD=∠CBD.
(1)求证:CD平分∠ACB;
(2)点E是AD延长线上一点,CE=CA,CF∥BD交AE于点F,若∠CAD=15°,
求证:EF=BD.
【答案】(1)见解析;(2)见解析.
【解析】
(1)根据等腰直角三角形的性质可得∠BAC=∠ABC,进而得到∠BAD=∠ABD,由等角对等边可得DA=DB,利用SSS证明△DAC≌△DBC,得到∠DCA=∠DCB即可得出结论;
(2)根据△DAC≌△DBC,CE=CA可得∠DBC=∠E=15°,CE=CA=CB,然后根据三角形外角的性质求出∠BDF=60°,利用平行线的性质得出∠CFD=60°,可得∠CFE=120°,再根据三角形内角和定理求出∠CDB=120°,利用AAS证明△BDC≌△EFC即可得出结论.
证明:(1)∵∠ACB=90°,AC=BC,
∴∠BAC=∠ABC=45°,
∵∠CAD=∠CBD,
∴∠BAD=∠ABD,
∴DA=DB,
又∵AC=BC,CD=CD,
∴△DAC≌△DBC,
∴∠DCA=∠DCB,即CD平分∠ACB;
(2)∵△DAC≌△DBC,CE=CA,∠CAD=15°,
∴∠DBC=15°,∠E=15°,CE=CA=CB,
∴∠BAD=∠ABD=45°-15°=30°,
∴∠BDF=30°+30°=60°,
∵CF∥BD,
∴∠CFD=∠BDF=60°,
∴∠CFE=120°,
又∵CD平分∠ACB,
∴∠DCB=45°,
∴∠CDB=180°-15°-45°=120°,
在△BDC和△EFC中,,
∴△BDC≌△EFC(AAS),
∴EF=BD.
科目:初中数学 来源: 题型:
【题目】如图1,在平面直角坐标系中,,点的坐标为,,点为线段上的动点(点不与、重合),连接,作,且,过点作轴,垂足为点.
(1)求证:;
(2)猜想的形状并证明结论;
(3)如图2,当为等腰三角形时,求点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图平面直角坐标系中,A点坐标为(0,1),AB=BC=,∠ABC=90°,CD⊥x轴.
(1)填空:B点坐标为 ,C点坐标为 .
(2)若点P是直线CD上第一象限上一点且△PAB的面积为6.5,求P点的坐标;
(3)在(2)的条件下点M是x轴上线段OD之间的一动点,当△PAM为等腰三角形时,直接写出点M的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,以△ABC的边AB为直径画⊙O,交AC于点D,半径OE∥BD,连接BE,DE,BD,设BE交AC于点F,若∠DEB=∠DBC.
(1)求证:BC是⊙O的切线;
(2)若BF=BC=2,求图中阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AB=AC,∠A=36°,AB的垂直平分线MD交AC于点D,AB于M,以下结论:①△BCD是等腰三角形;②射线BD是△ACB的角平分线;③△BCD的周长C△BCD=AC+BC;④△ADM≌BCD.正确的有( )
A.①②③B.①②C.①③D.③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,过点A(2,0)的两条直线,分别交轴于B,C,其中点B在原点上方,点C在原点下方,已知AB=.
(1)求点B的坐标;
(2)若△ABC的面积为4,求的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图.在直角坐标系中,矩形ABCO的边OA在x轴上,边OC在y轴上,点B的坐标为(1,3),将矩形沿对角线AC翻折,B点落在D点的位置,且AD交y轴于点E.那么点D的坐标为______.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com