精英家教网 > 初中数学 > 题目详情
5.抛物线y=ax2-2x与x轴正半轴相交于点A,顶点为B.
(1)用含a的式子表示点B的坐标;
(2)经过点C(0,-2)的直线AC与OB(O为原点)相交于点D,与抛物线的对称轴相交于点E,△OCD≌△BED,求a的值.

分析 (1)利用配方法即可求得B的坐标;
(2)依据△OCD≌△BED可得BE=CO,据此即可求得BF的长,根据B的坐标求得a的值.

解答 解:(1)y=ax2-2x=a(x-$\frac{1}{a}$)2-$\frac{1}{a}$,则B的坐标是($\frac{1}{a}$,-$\frac{1}{a}$);
(2)∵点C的坐标是(0,-2),
∴OC=2,
设抛物线的对称轴与x轴相交于点F.
∵EF∥y轴,F是OA的中点,
∴EF=$\frac{1}{2}$CO=1.
∵△OCD≌△BED,
∴BE=CO=2,
∴BF=BE+EF=3.
∴-$\frac{1}{a}$=-3,
∴a=$\frac{1}{3}$.

点评 本题考查了二次函数的顶点坐标的确定以及全等三角形的性质,求得BF的长是关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

15.如图,P为等腰三角形ABC内一点,过P分别作三条边BC、CA、AB的垂线,垂足分别为D、E、F.已知AB=AC=10,BC=12,且PD:PE:PF=1:3:3.则四边形PDCE的面积为(  )
A.10B.15C.$\frac{40}{3}$D.$\frac{50}{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.如图,AB为⊙O的直径,CA为⊙O的切线,CB交⊙O于D,$\widehat{AD}$=$\widehat{DE}$,AE交BD于F,若DF=BF,则tan∠BDE的值为(  )
A.$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{2}}{4}$C.$\frac{\sqrt{6}}{3}$D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,等边△ABC中,点D、E、F分别同时从点A、B、C出发,以相同的速度在AB、BC、CA上运动,连结DE、EF、DF.
(1)证明:△DEF是等边三角形;
(2)在运动过程中,当△CEF是直角三角形时,试求$\frac{{S}_{△DEF}}{{S}_{△ABC}}$的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,Rt△ABC中,∠ACB=90°,BC=6,点D为斜边AB的中点,点E为边AC上的一个动点.联结DE,过点E作DE的垂线与边BC交于点F,以DE,EF为邻边作矩形DEFG.
(1)如图1,当AC=8,点G在边AB上时,求DE和EF的长;
(2)如图2,若$\frac{DE}{EF}=\frac{1}{2}$,设AC=x,矩形DEFG的面积为y,求y关于x的函数解析式;
(3)若$\frac{DE}{EF}=\frac{2}{3}$,且点G恰好落在Rt△ABC的边上,求AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.(-$\frac{1}{3}$)-1-4cos30°+|-$\sqrt{12}$|的计算结果为(  )
A.-4B.4C.-3D.-2

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.一次函数y=-x+5与y=2x-1的图象交点在直线y=kx-7上,则k的值为5.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,已知直线y=$\frac{1}{2}$x与双曲线y=$\frac{k}{x}$交于A、B两点,点B的坐标为(-4,-2),C为第一象限内双曲线y=$\frac{k}{x}$上一点,且点C在直线y=$\frac{1}{2}$x的上方.
(1)求双曲线的函数解析式;
(2)若△AOC的面积为6,求点C的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.请你阅读下面的诗句:“栖树一群鸦,鸦数不知数,三只栖一树,五只没去处,五只栖一树,闲了一棵树,请你仔细数,鸦树各几何?”诗句中谈到的鸦为20只,树为5棵.

查看答案和解析>>

同步练习册答案