【题目】只有1和它本身两个因数且大于1的正整数叫做素数.我国数学家陈景润哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数都表示为两个素数的和”,如10=3+7.
(1)从7,11,13,17这4个素数中随机抽取一个,则抽到的数是11的概率是_____;
(2)从7,11,13,17这4个素数中随机抽取1个数,再从余下的3个数中随机抽取1个数,用画树状图或列表的方法,求抽到的两个素数之和等于24的概率.
科目:初中数学 来源: 题型:
【题目】“推进全科阅读,培育时代新人”.某学校为了更好地开展学生读书活动,随机调查了九年级50名学生最近一周的读书时间,统计数据如下表:
时间(小时) | 6 | 7 | 8 | 9 | 10 |
人数 | 5 | 8 | 12 | 15 | 10 |
(1)根据上述表格补全下面的条形统计图;
(2)写出这50名学生读书时间的众数、中位数、平均数;
(3)若该校有1000名学生,求最近一周的读书时间不少于7小时的人数?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】学校某数学兴趣小组想测学校旗杆高度如图,明明在稻香园一楼点测得旗杆顶点仰角为,在稻香园二楼点测得点的仰角为.明明从点朝旗杆方向步行米到点,沿坡度的台阶走到点,再向前走米到旗杆底部,已知稻香园高度为米,则旗杆的高度约为( )(参考数据:,,)
A.米B.米C.米D.米
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC与△ABD中,∠DBA=∠CAB,AC与BD交于点F
(1)如图1,若∠DAF=∠CBF,求证:AD=BC;
(2)如图2,∠D=135°,∠C=45°,AD=2,AC=4,求BD的长.
(3)如图3,若∠DBA=18°,∠D=108°,∠C=72°,AD=1,直接写出DB的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知一次函数的图像与反比例函数的图像交于点,与轴交于点,若,且.
(1)求反比例函数与一次函数的表达式;
(2)若点为轴上一点,是等腰三角形,求点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线经过点A(-3,0),C(0,3),交x轴于另一点B,其顶点为D.
(1)求抛物线的解析式;
(2)点P为抛物线上一点,直线CP交x轴于点E,若△CAE与△OCD相似,求P点坐标;
(3)如果点F在y轴上,点M在直线AC上,那么在抛物线上是否存在点N,使得以C,F,M,N为顶点的四边形是菱形?若存在,请求出菱形的周长;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,小明在大楼30米高(即PH=30米)的窗口P处进行观测,测得山坡上A处的俯角∠APQ为15°,山脚B处的俯角∠BPQ为60°,已知该山坡的坡度i(即tan∠ABC)为1:,点P,H,B,C,A在同一个平面上,点H、B、C在同一条直线上,且PH丄HC.
(1)求出山坡坡角(∠ABC)的大小;
(2)求A、B两点间的距离(结果精确到0.1米,参考数据:≈1.732).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=﹣x2+bx+c经过点A(4,3),顶点为B,对称轴是直线x=2.
(1)求抛物线的函数表达式和顶点B的坐标;
(2)如图1,抛物线与y轴交于点C,连接AC,过A作AD⊥x轴于点D,E是线段AC上的动点(点E不与A,C两点重合);
(i)若直线BE将四边形ACOD分成面积比为1:3的两部分,求点E的坐标;
(ii)如图2,连接DE,作矩形DEFG,在点E的运动过程中,是否存在点G落在y轴上的同时点F恰好落在抛物线上?若存在,求出此时AE的长;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在直角坐标系中,直线与x轴,y轴分别交于点A,B,点在第一象限内,连结,,.动点P在上从点A向终点B匀速运动,同时,动点Q在上从点C向终点O匀速运动,它们同时到达终点,连结交于点D.
(1)求点B的坐标和a的值;
(2)当点Q运动到中点时,连结,求的面积;
(3)作交直线于点R.
①当为等腰三角形时,求的长度;
②记交于点E,连结,则的最小值为__________.(直接写出答案)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com