【题目】猜想:如图①,在ABCD中,点O是对角线AC的中点,过点O的直线分别交AD、BC于点E、F.若ABCD的面积是10,则四边形CDEF的面积是 .
探究:如图②,在菱形ABCD中,对角线AC、BD相交于点O,过点O的直线分别交AD、BC于点E、F.若AC=4,BD=8,求四边形ABFE的面积.
应用:如图③,在Rt△ABC中,∠BAC=90°,延长BC到点D,使DC=BC,连结AD.若AC=4,,则△ABD的面积是 .
【答案】5;8;12
【解析】
试题分析:猜想:首先根据平行四边形的性质可得AD∥BC,OA=OC.根据平行线的性质可得∠EAO=∠FCO,∠AEO=∠CFO,进而可根据AAS定理证明△AEO≌△CFO,再根据全等三角形的性质可得结论;
探究:根据菱形的性质得到AD∥BC,AO=CO,BO=BD=4,根据全等三角形的判定定理得到△AOE≌△COF,由于AC⊥BD,于是得到结果;
应用:延长AC到E使CE=AC=4,根据全等三角形的判定定理得到△ABC≌△CDE,由全等三角形的性质得到∠E=∠BAC=90°,根据勾股定理得到DE==3,即可得到结论.
试题解析:猜想:∵四边形ABCD是平行四边形,
∴AD∥BC,OA=OC.
∴∠EAO=∠FCO,∠AEO=∠CFO,
在△AOE和△COF中,
,
∴△AEO≌△CFO,
∴四边形CDEF的面积=S△ACD=ABCD的面积=5;
探究:∵四边形ABCD是菱形,
∴AD∥BC,AO=CO,BO=BD=4,
∴∠OAE=∠OCF,∠OEA=∠OFC,
在△AOE于△COF中,,
∴△AOE≌△COF,
∵AC⊥BD,
∴.
应用:延长AC到E使CE=AC=4,
在△ABC与△CDE中,,
∴△ABC≌△CDE,
∴∠E=∠BAC=90°,
∴DE==3,
∴S△ABD=S△ADE=AEDE=×8×3=12.
科目:初中数学 来源: 题型:
【题目】已知:如图,在△ABC中,∠A=30°,∠B=60°.
(1)作∠B的平分线BD,交AC于点D;作AB的中点E(要求:尺规作图,保留作图痕迹,不必写作法和证明);
(2)连接DE,求证:△ADE≌△BDE.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点O在直线AB上,OD是∠AOC的平分线,OE是∠COB的平分线.
(1)求∠DOE的度数;
(2)如果∠AOD=51°17′,求∠BOE的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】用配方法解一元二次方程x2﹣4x+2=0,下列配方正确的是( )
A.(x+2)2=2B.(x﹣2)2=﹣2C.(x﹣2)2=2D.(x﹣2)2=6
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在坐标系xOy中,已知D(﹣5,4),B(﹣3,0),过D点分别作DA、DC垂直于x轴,y轴,垂足分别为A、C两点,动点P从O点出发,沿x轴以每秒1个单位长度的速度向右运动,运动时间为t秒.
(1)当t为何值时,PC∥DB;
(2)当t为何值时,PC⊥BC;
(3)以点P为圆心,PO的长为半径的⊙P随点P的运动而变化,当⊙P与△BCD的边(或边所在的直线)相切时,求t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法正确的是( )
A.有一个直角的四边形是矩形B.一组对边平行的四边形是平行四边形
C.对角线互相垂直平分的四边形是正方形D.有一组邻边相等的平行四边形是菱形
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com