【题目】如图,矩形ABCD的两个顶点A、B分别在x、y轴上,顶点C、D位于第二象限,且OA=3,OB=2,对角线AC、BD交于点G,若双曲线经过C、G,则k=__________.
【答案】-3.5
【解析】
分别过C、G两点作x轴的垂线,交x轴于点E、F,作CH⊥y轴于H,设,根据矩形的性质与平行线分线段成比例得出点G的坐标,根据反比例函数系数k=xy求出点m,通过证明△AOB∽△BHC,求得CE,得出点C坐标,进而求解.
如图,分别过C、G两点作x轴的垂线,交x轴于点E、F,作CH⊥y轴于H,
∴CE∥GF,设,
∵四边形ABCD是矩形,
∴AG=CG,
∴GF=CE,EF=,
∴OF=,
∴,
∵曲线经过点C、G,
∴,
解得,,
∴CH=1,
∵∠ABC=90°,
∴∠CBH+∠ABO=90°,
∵∠OAB+∠ABO=90°,
∴∠OAB=∠CBH,
∵∠AOB=∠BHC=90°,
∴△AOB∽△BHC,
∴,即,
∴BH=,
∴OH=,
∴,
∴,
故答案为:-3.5.
科目:初中数学 来源: 题型:
【题目】如图,将直角三角板的直角边放在半圆的直径上,直角顶点与直径端点重合,已知,且的直角边与半圆的半径长均为2.现将直角三角板沿直径的方向向右平移,将三角板平移后的三角形记为.
(1)如图,当平移到斜边与半圆相切时,试求的长度(结果保留);
(2)设平移距离为,在直角三角形平移过程中,折线(包括端点)与半圆弧共有3个交点时,求的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=ax2+bx+c的图象所示,下列结论中:①abc>0;②2a+b=0;③当m≠1时,a+b>am2+bm;④a﹣b+c>0;⑤若ax12+bx1=ax22+bx2,且x1≠x2,则x1+x2=2,其中正确的结论分别是___.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线C:y=(-a2+a)x2+x+1(a≠0)
(1)无论a为何值,抛物线C总是经过一个定点,该定点的坐标为_____.
(2)无论a为何值,该抛物线的顶点总在一条固定的直线上运动,求出该直线的解析式.
(3)当0<y≤2时,y>0恒成立,求a的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A,B,C,D是直径为AB的⊙O上四个点,C是劣弧的中点,AC交BD于点E,AE=2,EC=1.
(1)求证:△DEC∽△ADC;
(2)连结DO,探究四边形OBCD是否是菱形?若是,请你给予证明;若不是,请说明理由;
(3)延长AB到H,使BH=OB,求证:CH是⊙O的切线.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】新型冠状病毒肺炎疫情发生后,全社会积极参与疫情防控工作,某市为了尽快完成100万只口罩的生产任务,安排甲、乙两个大型工厂完成.已知甲厂每天能生产口罩的数量是乙厂每天能生产口罩的数量的1.5倍,并且在独立完成60万只口罩的生产任务时,甲厂比乙厂少用5天.问至少应安排两个工厂工作多少天才能完成任务?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点A在一次函数y=x位于第一象限的图象上运动,点B在x轴正半轴上运动,在AB右侧以它为边作矩形ABCD,且AB=2,AD=1,则OD的最大值是( )
A.B.+2C.+2D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】《算法统宗》是一本通俗实用的数学书,也是将数字入诗的代表作,这本书由明代程大位花了近20年完成,他原本是一位商人,经商之便搜集各地算书和文字方面的书籍,编成首首的歌谣口诀,将枯燥的数学问题化成美妙的诗歌,读来朗朗上口,程大位还有一首类似二元一次方程组的饮酒数学诗:“肆中饮客乱纷纷,薄酒名脑厚酒醇.醇酒一瓶醉三客,薄酒三瓶醉一人,共同饮了一十九,三十三客醉颜生,试问高明能算士,几多酵酒几多醇?”这首诗是说,好酒一瓶,可以醉倒3位客人;薄酒三瓶,可以醉倒一位客人,如果33位客人醉倒了,他们总共饮下19瓶酒.试问:其中好酒、薄酒分别是多少瓶?设有好酒x瓶,薄酒y瓶.根据题意,可列方程组为( )
A. B. C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com