精英家教网 > 初中数学 > 题目详情

已知:如图,在△ABC中,AB=AC,∠C=2∠A,BD⊥AC于D.
求:(1)∠C的度数;(2)∠DBC的度数.

解:(1)∵AB=AC,∴∠ABC=∠C,
∵∠C=2∠A,∴∠ABC=2∠A,
∴∠A+2∠A+2∠A=180°,∠A=36°,
∴∠C=2∠A=72°;

(2)∵BD⊥AC于D,∴∠BDC=90°,
∵∠C=72°,
∴∠DBC=180°-∠C-∠BDC=180°-90°-72°=18°.
分析:(1)先根据AB=AC可知∠ABC=∠C,根据三角形的内角和定理可求出∠C的度数;
(2)由BD⊥AC于D,可知∠BDC=90°;再根据(1)中所求∠C的度数及三角形内角和定理即可求出∠DBC的度数.
点评:本题考查的是等腰三角形的性质及三角形的内角和定理,解答此题的关键是熟知三角形的内角和为180°.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

34、已知:如图,在AB、AC上各取一点,E、D,使AE=AD,连接BD,CE,BD与CE交于O,连接AO,∠1=∠2,
求证:∠B=∠C.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•启东市一模)已知,如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D.
(1)以AB边上一点O为圆心,过A,D两点作⊙O(不写作法,保留作图痕迹),再判断直线BC与⊙O的位置关系,并说明理由;
(2)若(1)中的⊙O与AB边的另一个交点为E,半径为2,AB=6,求线段AD、AE与劣弧DE所围成的图形面积.(结果保留根号和π)《根据2011江苏扬州市中考试题改编》

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在△ABC中,∠C=120°,边AC的垂直平分线DE与AC、AB分别交于点D和点E.
(1)作出边AC的垂直平分线DE;
(2)当AE=BC时,求∠A的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:如图,在AB、AC上各取一点E、D,使AE=AD,连接BD,CE,BD与CE交于O,连接AO,∠1=∠2,
求证:∠B=∠C.

查看答案和解析>>

科目:初中数学 来源:专项题 题型:证明题

已知:如图,在AB、AC上各取一点,E、D,使AE=AD,连结BD,CE,BD与CE交于O,连结AO,
           ∠1=∠2;
求证:∠B=∠C

查看答案和解析>>

同步练习册答案