(1)证明:在R
t△ABC中,tan∠BAC=1=tan45°,
∴∠BAC=45°,
∵∠ACB=90°,
∴∠ABC=45°.
∴△ABC为等腰直角三角形,
∵CD⊥AB,
∴∠BCD=45°,
过E点作EK⊥BC,EK与CD相交于点K,
∴∠GKE=45°=∠B
∵∠GEK+∠KEF=90°=∠KEF+∠BEF,
∴∠GEK=∠FEB,
∴△GEK∽△FEB,
∴
,
∴EF=2EG;
(2)根据(1)的证明,同理可证:
当tan∠BAC=2时,EF=EG;
(3)在R
t△ABC中,∠ACB=90°,CD⊥AB,
则tan∠BAC=tan∠CAD=tan∠BCD=2,
设AC=3k,则
,
过点E作EM⊥BC,EM与CD的延长线相交于点M,tan∠ECM=2,
∴EM=4k.
在△AGC与△EGM中,
∵AC∥EM,
∴∠ACG=∠M.∠AGC=∠EGM,
∴△AGC∽△EGM
∴
过点G作GN∥EH,与AH相交于点N,
∴△ANG∽△AHE,
∴
=
,
∴
,∴
∠GEM+∠MEF=90°=∠MEF+∠FEB,
∴∠GEM=∠FEB,
∠M=∠B,
∴△GEM∽△FEB,
∴
,
∴EF=EG.
同理可证EF′=EG′.∠FEF'=∠GEG',
∴△GEG'≌△FEF',
∴FF'=GG',
∴
.
HG′∥NG,同理可证
,
∴
,
∴
,
∴
,
∴
∴△HCE是等腰直角三角形,∠CHE=45°,
在△HG'C中,过点G'作G'W⊥CH,垂足是W,
设G'W=x,则
,
∴CW=2x,CW+HW=CH,
∴
,
∴
,
∴
.
分析:(1)根据tan∠BAC=1=tan45°,得出△ABC为等腰直角三角形,再过E点作EK⊥BC,EK与CD相交于点K,得出∠GKE=45°=∠B,再根据∠GEK+∠KEF=90°=∠KEF+∠BEF,得出△GEK∽△FEB,从而证出
,即可得出EF=2EG;
(2)根据(1)的证明过程,同理可证出当tan∠BAC=2时,得出EF=EG;
(3)根据(2)的结论,先设AC=3k,得出
,再过点E作EM⊥BC,EM与CD的延长线相交于点M,得出△AGC∽△EGM,得出
,再过点G作GN∥EH,与AH相交于点N,得出△ANG∽△AHE,得出NH的值,同理得出△GEM∽△FEB,得出EF=EG.同理可证EF′=EG′,∠FEF'=∠GEG',得出△GEG'≌△FEF',即可证出
的值,再根据HG′∥NG,同理可证
,得出EC=CH,得出△HCE是等腰直角三角形,在△HG'C中,求出CW的值,从而得出G′H 的值.
点评:此题考查了相似三角形的判定与性质;解决本题的关键是根据直角三角形的性质以及相似三角形的性质得到它们的比值进行计算即可.