精英家教网 > 初中数学 > 题目详情

【题目】如图,在矩形ABCD中,点EF在对角线BD上,BEDF.请你判断:AECF的关系,并加以证明

【答案】AECF相等且平行;或相等且共线.理由详见解析

【解析】

AECF的关系分为数量关系和位置关系两种情况.由平行四边形的性质得出AD=CD,∠ABE=CDF,结合BE=DF可证明ABE≌△CDF,根据全等三角形的性质可得出结论.

解:AECF相等且平行;或相等且共线.理由如下:

1)数量关系:AECF

∵四边形ABCD是矩形,

ABCD,∠ABE=∠CDF

在△ABE和△CDF中,

∴△ABE≌△CDFSAS).

AECF

2)当点E与点F不在BD的中点时,AEFC

∵△ABE≌△CDF

∴∠AEB=∠CFD

∴∠AED=∠CFB

AECF

3)当点E和点FBD的中点时,AECF共线.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线轴交于点轴交于点二次函数的图象经过两点,且与轴的负半轴交于点

求二次函数的解析式及点的坐标.

是线段上的一动点,动点在直线下方的二次函数图象上.设点的横坐标为.过点于点求线段的长关于的函数解析式,并求线段的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,点EF分别是ADBC的中点,分别连接BEDFBD

1)求证:△AEB≌△CFD

2)若四边形EBFD是菱形,求∠ABD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知二次函数的图象过点,与轴交于另一点,且对称轴是直线

1)求该二次函数的解析式;

2)若上的一点,作,当面积最大时,求的长;

3轴上的点,过轴与抛物线交于,过轴于,当以为顶点的三角形与以为顶点的三角形相似时,求点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线ykx4k+4与抛物线yx2x交于AB两点.

1)直线总经过定点,请直接写出该定点的坐标;

2)点P在抛物线上,当k=﹣时,解决下列问题:

在直线AB下方的抛物线上求点P,使得△PAB的面积等于20

连接OAOBOP,作PCx轴于点C,若△POC和△ABO相似,请直接写出点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(2017江西省)如图1,研究发现,科学使用电脑时,望向荧光屏幕画面的视线角”α约为20°,而当手指接触键盘时,肘部形成的手肘角”β约为100°.图2是其侧面简化示意图,其中视线AB水平,且与屏幕BC垂直.

(1)若屏幕上下宽BC=20cm,科学使用电脑时,求眼睛与屏幕的最短距离AB的长;

(2)若肩膀到水平地面的距离DG=100cm,上臂DE=30cm,下臂EF水平放置在键盘上,其到地面的距离FH=72cm.请判断此时β是否符合科学要求的100°?

(参考数据:sin69°≈,cos21°≈,tan20°≈,tan43°≈,所有结果精确到个位)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某公司销售部为了调动销售员的积极性,决定实行目标管理,根据目标完成的情况对销售员进行适当的奖励.为了确定一个适当的月销售目标,该公司统计了销售部每位销售员在某月的销售额(单位:万元),并将结果绘制成如图所示的统计图.

1 2

1)补全如图1所示的统计图;

2)月销售额在 万元的人数最多,该公司销售部人均月销售额是 万元;

3)若想让一半左右的销售员都能达到销售目标,你认为月销售额定为多少合适?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y=mx+n与双曲线y=相交于A(﹣12)、B2b)两点,与y轴相交于点C

1)求mn的值;

2)若点D与点C关于x轴对称,求△ABD的面积;

3)在坐标轴上是否存在异于D点的点P,使得SPAB=SDAB?若存在,直接写出P点坐标;若不存在,说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某大楼的顶部树有一块广告牌CD,小李在山坡的坡脚A处测得广告牌底部D的仰角为60°.沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的坡度i=1AB=10AE=15.(i=1是指坡面的铅直高度BH与水平宽度AH的比)

1)求点B距水平面AE的高度BH

2)求广告牌CD的高度.

(测角器的高度忽略不计,结果精确到0.1.参考数据:1.4141.732

查看答案和解析>>

同步练习册答案