精英家教网 > 初中数学 > 题目详情
12.如图,C为线段AB上一点,分别以AC、BC为边在AB的同侧作等边△HAC与等边△DCB,连接DH.
(1)如图1,当∠DHC=90°时,求$\frac{BC}{AC}$的值;
(2)在(1)的条件下,作点C关于直线DH的对称点E,连接AE、BE,求证:CE平分∠AEB;
(3)现将图1中△DCB绕点C顺时针旋转一定角度α(0°<α<90°),如图2,点C关于直线DH的对称点为E,则(2)中的结论是否成立并证明.

分析 (1)根据△HAC与△DCB都是等边三角形,可得∠ACH=∠DCB=60°,AC=HC,BC=CD,进而得出∠HDC=180°-∠DHC-∠HCD=30°,得出CD=2CH,即可得到BC=2AC,最后求得$\frac{BC}{AC}$的值;
(2)先由对称性得∠EHD=90°,EH=HC,根据E,H,C三点共线,以及三角形外角性质,得出∠AEC=$\frac{1}{2}$∠AHC=30°,由(1)可得BC=2CH=EC,得出∠BEC=$\frac{1}{2}$∠ACE=30°,即可得出CE平分∠AEB;
(3)由对称性可知:HC=HE,进而得出A,C,E都在以H为圆心,HA为半径的圆上,据此得到∠AEC=$\frac{1}{2}$∠AHC=30°,而同理可得,∠BEC=$\frac{1}{2}$∠BDC=30°,最后得出EC平分∠AEB.

解答 解:(1)∵△HAC与△DCB都是等边三角形,
∴∠ACH=∠DCB=60°,AC=HC,BC=CD,
∴∠HCD=180°-∠ACH-∠DCB=60°,
∵∠DHC=90°,
∴∠HDC=180°-∠DHC-∠HCD=30°,
∴CD=2CH,
∴BC=2AC,
∴$\frac{BC}{AC}$=2;

(2)如图1,由对称性得∠EHD=90°,EH=HC,
∵AH=HC,
∴EH=AH,
∵∠DHC=90°,
∴E,H,C三点共线,
∴∠AEC=$\frac{1}{2}$∠AHC=30°,
由(1)可得BC=2CH=EC,
∴∠BEC=$\frac{1}{2}$∠ACE=30°,
∴∠AEC=∠BEC,即CE平分∠AEB;

(3)结论仍然正确,理由如下:
如图2,由对称性可知:HC=HE,
又∵AH=HC,
∴HC=HA=HE,
∵A,C,E都在以H为圆心,HA为半径的圆上,
∴∠AEC=$\frac{1}{2}$∠AHC=30°,
同理可得,∠BEC=$\frac{1}{2}$∠BDC=30°,
∴∠AEC=∠BEC,
∴EC平分∠AEB.

点评 本题属于三角形综合题,主要考查了等边三角形的性质,圆周角定理以及轴对称的性质的综合应用,解题时注意:如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线;解题的关键是运用等边三角形的三个内角都相等,且都等于60°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

2.写出5个数(不允许重复),同时满足下列4个条件:
①有1个数既不是正数,也不是负数;
②其中3个不是负数;
③其中至少有1个是正分数;
④其中只有1个是负整数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.计算.
(1)(-$\frac{3}{5}$)+(-3$\frac{4}{7}$)-1.4-(-$\frac{11}{7}$)
(3)$\root{3}{729}$-$\sqrt{0.0001}$×(2×5)2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.为了解本校九年级学生期末数学考试情况,小亮在九年级随机抽取了一部分学生的期末数学成绩为样本,分为A(100-90分)、B(89~80分)、C(79~60分)、D(59~0分)四个等级进行统计,并将统计结果绘制成如下统计图,请你根据统计图解答以下问题:

(1)这次随机抽取的学生共有多少人?
(2)请补全条形统计图;
(3)这个学校九年级共有学生1200人,若分数为80分(含80分)以上为优秀,请估计这次九年级学生期末数学考试成绩为优秀的学生人数大约有多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.分解因式:x2+12x-189,分析:由于常数项数值较大,则将x2+12x-1变为完全平方公式,再运用平方差公式进行分解,这样简单易行.
x2+12x-189=x2+2*6x+62-36-189
=(x+6)2-225
=(x+6)2-152
=(x+6+15)(x+6-15)
=(x+21)(x-9)
请按照上面的方法分解因式:x2-60x+884.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.如图,在平面直角坐标系中,已知点A(1,0),B(1-a,0),C(1+a,0)(a>0),点P在以D(4,4)为圆心,1为半径的圆上运动,且始终满足∠BPC=90°,则a的最小值是4.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.已知$\frac{3(2a-b)^{2}+(9-a)^{2}}{\sqrt{a+3}}$=0,求$\sqrt{{a}^{2}+b+1}$的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.用公式法解方程
(1)x2-3x-1=0
(2)$\frac{2}{3}$t2-2t=-1
(3)4y2-4$\sqrt{3}$y+5=0
(4)2x(x+$\sqrt{2}$)=-1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.解分式方程:$\frac{2x}{2x-5}$-$\frac{1}{2x+5}$=1.

查看答案和解析>>

同步练习册答案