分析 根据折叠的性质可得AC=AE=6,CD=DE,∠ACD=∠AED=∠DEB=90°,利用勾股定理列式求出AB,从而求出BE,设CD=DE=x,表示出BD,然后在Rt△DEB中,利用勾股定理列出关于x的方程可求得CD的长,最后在△ACD中,依据勾股定理可求得AD的长.
解答 解:∵△ACD与△AED关于AD成轴对称,
∴AC=AE=6cm,CD=DE,∠ACD=∠AED=∠DEB=90°,
在Rt△ABC中,AB2=AC2+BC2=62+82 =102,
∴AB=10,
BE=AB-AE=10-6=4,
设CD=DE=xcm,则DB=BC-CD=8-x,
在Rt△DEB中,由勾股定理,得x2+42=(8-x)2,
解得x=3,即CD=3cm.
在△ACD中,AD=$\sqrt{A{C}^{2}+C{D}^{2}}$=$\sqrt{{6}^{2}+{3}^{2}}$=3$\sqrt{5}$.
故答案为:3$\sqrt{5}$.
点评 本题考查了翻折变换的性质,勾股定理的应用,熟记性质并表示出Rt△DEB的三边,然后利用勾股定理列出方程是解题的关键.
科目:初中数学 来源: 题型:选择题
A. | 10 | B. | 8 | C. | 5 | D. | 4 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 6折 | B. | 7折 | C. | 8折 | D. | 9折 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
甲 | 乙 | |
进价(元/件) | 40 | 60 |
售价(元/件) | 60 | 100 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | -1 | B. | -3 | C. | 2 | D. | 3 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com