精英家教网 > 初中数学 > 题目详情
如图,在平面直角坐标系中,已知点A坐标为(2,4),直线x=2与x轴相交于点B,连接OA,抛物线y=x2从点O沿OA方向平移,与直线x=2交于点P,顶点M到A点时停止移动.
(1)求线段OA所在直线的函数解析式;
(2)设抛物线顶点M的横坐标为m,
①用m的代数式表示点P的坐标;
②当m为何值时,线段PB最短;
(3)当线段PB最短时,相应的抛物线上是否存在点Q,使△QMA的面积与△PMA的面积相等?若存在,请求出点Q的坐标;若不存在,请说明理由.

【答案】分析:(1)根据A点的坐标,用待定系数法即可求出直线OA的解析式.
(2)①由于M点在直线OA上,可根据直线OA的解析式来表示出M点的坐标,因为M点是平移后抛物线的顶点,因此可用顶点式二次函数通式来设出这个二次函数的解析式,P的横坐标为2,将其代入抛物线的解析式中即可得出P点的坐标.
②PB的长,实际就是P点的纵坐标,因此可根据其纵坐标的表达式来求出PB最短时,对应的m的值.
(3)根据(2)中确定的m值可知:M、P点的坐标都已确定,因此AM的长为定值,若要使△QMA的面积与△PMA的面积相等,那么Q点到AM的距离和P到AM的距离应该相等,因此可分两种情况进行讨论:
①当Q在直线OA下方时,可过P作直线OA的平行线交y轴于C,那么平行线上的点到OA的距离可相等,因此Q点必落在直线PC上,可先求出直线PC的解析式,然后利用抛物线的解析式,看得出的方程是否有解,如果没有则说明不存在这样的Q点,如果有解,得出的x的值就是Q点的横坐标,可将其代入抛物线的解析式中得出Q点的坐标.
②当Q在直线OA上方时,同①类似,可先找出P关于A点的对称点D,过D作直线OA的平行线交y轴于E,那么直线DE上的点到AM的距离都等于点P到AM上的距离,然后按①的方法进行求解即可.
(本题也可通过以AP为底,找出和点M到AP的距离相等的两条直线,然后联立抛物线的解析式进行求解即可).
解答:解:(1)设OA所在直线的函数解析式为y=kx,
∵A(2,4),
∴2k=4,
∴k=2,
∴OA所在直线的函数解析式为y=2x.

(2)①∵顶点M的横坐标为m,且在线段OA上移动,
∴y=2m(0≤m≤2).
∴顶点M的坐标为(m,2m).
∴抛物线函数解析式为y=(x-m)2+2m.
∴当x=2时,y=(2-m)2+2m=m2-2m+4(0≤m≤2).
∴点P的坐标是(2,m2-2m+4).
②∵PB=m2-2m+4=(m-1)2+3,
又∵0≤m≤2,
∴当m=1时,PB最短.

(3)当线段PB最短时,此时抛物线的解析式为y=(x-1)2+2
即y=x2-2x+3.
假设在抛物线上存在点Q,使S△QMA=S△PMA
设点Q的坐标为(x,x2-2x+3).
①点Q落在直线OA的下方时,过P作直线PC∥AO,交y轴于点C,
∵PB=3,AB=4,
∴AP=1,
∴OC=1,
∴C点的坐标是(0,-1).
∵点P的坐标是(2,3),
∴直线PC的函数解析式为y=2x-1.
∵S△QMA=S△PMA
∴点Q落在直线y=2x-1上.
∴x2-2x+3=2x-1.
解得x1=2,x2=2,
即点Q(2,3).
∴点Q与点P重合.
∴此时抛物线上存在点Q(2,3),使△QMA与△APM的面积相等.
②当点Q落在直线OA的上方时,
作点P关于点A的对称称点D,过D作直线DE∥AO,交y轴于点E,
∵AP=1,
∴EO=DA=1,
∴E、D的坐标分别是(0,1),(2,5),
∴直线DE函数解析式为y=2x+1.
∵S△QMA=S△PMA
∴点Q落在直线y=2x+1上.
∴x2-2x+3=2x+1.
解得:x1=2+,x2=2-
代入y=2x+1得:y1=5+2,y2=5-2
∴此时抛物线上存在点Q1(2+,5+2),Q2(2-,5-2
使△QMA与△PMA的面积相等.
综上所述,抛物线上存在点,Q1(2+,5+2),Q2(2-,5-2),Q3(2,3),使△QMA与△PMA的面积相等.
点评:本题考查了一次函数解析式的确定、二次函数图象的平移、函数图象的交点、图形面积的求法等知识点,主要考查学生分类讨论和数形结合的数学思想方法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的一个动点,但是点P不与点0、点A重合.连接CP,D点是线段AB上一点,连接PD.
(1)求点B的坐标;
(2)当∠CPD=∠OAB,且
BD
AB
=
5
8
,求这时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•渝北区一模)如图,在平面直角坐标xoy中,以坐标原点O为圆心,3为半径画圆,从此圆内(包括边界)的所有整数点(横、纵坐标均为整数)中任意选取一个点,其横、纵坐标之和为0的概率是
5
29
5
29

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,等腰梯形ABCD的下底在x轴上,且B点坐标为(4,0),D点坐标为(0,3),则AC长为
5
5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标xOy中,已知点A(-5,0),P是反比例函数y=
k
x
图象上一点,PA=OA,S△PAO=10,则反比例函数y=
k
x
的解析式为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,动点P从点O出发,在梯形OABC的边上运动,路径为O→A→B→C,到达点C时停止.作直线CP.
(1)求梯形OABC的面积;
(2)当直线CP把梯形OABC的面积分成相等的两部分时,求直线CP的解析式;
(3)当△OCP是等腰三角形时,请写出点P的坐标(不要求过程,只需写出结果).

查看答案和解析>>

同步练习册答案