精英家教网 > 初中数学 > 题目详情
7.如图1,在正方形ABCD的外侧,作两个等边三角形ADE和DCF,连接AF、BE.

(1)请判断AF与BE的关系并给予证明;
(2)如图2,若将条件“两个等边三角形ADE和DCF变为两个等腰三角形ADE和DCF,且EA=ED=FD=FC”,第(1)问中的结论是否仍然成立?请作出判断并给予证明;
(3)若三角形ADE和DCF为一般三角形,且AE=DF,ED=FC,第(1)问中的结论是否仍然成立?请直接写出判断结果.

分析 (1)根据正方形的性质、等边三角形的性质以及全等三角形的判定定理证明△BAE≌△ADF,根据全等三角形的性质进行证明;
(2)根据边边边定理、边角边定理证明三角形全等,根据全等三角形的性质解答;
(3)与(2)的证明方法相似,证明即可.

解答 解:(1)AF=BE;AF⊥BE.理由如下:如图1所示:
∵四边形ABCD是正方形,
∴∠BAD=∠ADC=90°,AB=AD=CD,
∵△ADE和△DCF是等边三角形,
∴∠DAE=∠CDF=60°,AE=AD,DF=CD,
∴AE=DF,∠BAE=∠ADF=150°,
在△BAE和△ADF中,$\left\{\begin{array}{l}{AB=AD}&{\;}\\{∠BAE=∠ADF}&{\;}\\{AE=DF}&{\;}\end{array}\right.$,
∴△BAE≌△ADF(SAS),
∴AF=BE,∠ABE=∠DAF.
∵∠DAF+∠BAF=90°,
∴∠ABE+∠BAF=90°,
∴∠AMB=90°,
∴AF⊥BE;
(2)第(1)问中的结论仍然成立,其理由如下:如图2所示:
在正方形ABCD中,∠BAD=∠ADC=90°,AB=AD=CD.
∵EA=ED=FD=FC,
在△AED和△DFC中,$\left\{\begin{array}{l}{AE=DF}&{\;}\\{AD=DC}&{\;}\\{DE=CF}&{\;}\end{array}\right.$,
∴△AED≌△DFC(SSS),
∴∠EAD=∠FDC.
∴∠BAD+∠EAD=∠ADC+∠FDC.
即∠BAE=∠ADF.
在△BAE和△ADF中,$\left\{\begin{array}{l}{BA=AD}&{\;}\\{∠BAE=∠ADF}&{\;}\\{AE=DF}&{\;}\end{array}\right.$,
∴△BAE≌△ADF(SAS)
∴AF=BE,
∴∠ABE=∠DAF.
∵∠DAF+∠BAF=90°,
∴∠ABE+∠BAF=90°,
∴∠AMB=90°,
∴AF⊥BE.
(3)所画图形如图3,第(1)问的结论成立,理由如下:
在△AED和△DFC中,$\left\{\begin{array}{l}{AE=DF}&{\;}\\{AD=DC}&{\;}\\{DE=CF}&{\;}\end{array}\right.$,
∴△AED≌△DFC(SSS),
∴∠EAD=∠FDC.
∴∠BAD+∠EAD=∠ADC+∠FDC.即∠BAE=∠ADF.
在△BAE和△ADF中,$\left\{\begin{array}{l}{BA=AD}&{\;}\\{∠BAE=∠ADF}&{\;}\\{AE=DF}&{\;}\end{array}\right.$,
∴△BAE≌△ADF(SAS),
∴AF=BE,
∴∠ABE=∠DAF.
∵∠DAF+∠BAF=90°,
∴∠ABE+∠BAF=90°,
∴∠AMB=90°,
∴AF⊥BE.

点评 本题是四边形综合题目,考查的是正方形的性质、全等三角形的判定和性质、直角三角形的性质、等边三角形的性质、等腰三角形的性质等知识;本题综合性强,有一定难度,证明三角形全等是解决问题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

17.解方程组:
(1)$\left\{\begin{array}{l}{2x+3y=9}\\{7x-5y=16}\end{array}\right.$   
(2)$\left\{\begin{array}{l}{x-y+z=5}\\{x+y=-1}\\{2x-y-z=2}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.某中学七、八年级各选派10名选手参加学校举办的知识竞赛,竞赛计分采用10分制,选手得分均为整数,成绩达到6分或6分以上为合格,达到9分或10分为优秀.七、八年级两支代表队选手成绩分布的条形统计图和成绩统计分析表如下所示.
队别平均分众数 中位数方差合格率优秀率
七年级6.7 am3.4190%20%
八年级7.1 pq1.6980%10%

(1)请依据图表中的数据,求出a的值;并直接写出表格中m,p,q的值;
(2)有人说七年级的合格率、优秀率均高于八年级,所以七年级队成绩比八年级队好,但也有人说八年级队成绩比七年级队好.请你给出两条支持八年级队成绩好的理由、

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.解不等式组:$\left\{\begin{array}{l}{\frac{3x-1}{2}+\frac{x-2}{3}<\frac{2x+2}{6}}\\{\frac{2-5x}{3}+1≤\frac{5x}{4}}\end{array}\right.$,并把解集在数轴上表示出来.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.一次函数y=-2x+4与x轴、y轴分别交于点A、B,点C与点A关于y轴对称.
(1)求△ABC的面积;
(2)m为实数,判断点P(m+2,-2m+1)是否在该函数的图象上,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,将四边形ABCD的对角线BD向两个方向延长,分别至点E和点F,且使BE=DF,若AE∥CF且AE=CF.
(1)求证:△ABE≌△CDF;
(2)若AC⊥EF,求证:四边形ABCD是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.计算:-32+4sin60°-|1-$\sqrt{3}$|+(π-2017)0+($\frac{1}{2}$)-2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.先化简,再求值:3(x+y)2-(2x-y)(2x+y),其中x=-1,y=2.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.若方程组$\left\{\begin{array}{l}{a_1}x+{b_1}y={c_1}\\{a_2}x+{b_2}y={c_2}\end{array}\right.$的解是$\left\{\begin{array}{l}x=3\\ y=4\end{array}\right.$,则方程组$\left\{\begin{array}{l}\frac{1}{2}{a_1}x+\frac{1}{3}{b_1}y={c_1}\\ \frac{1}{2}{a_2}x+\frac{1}{3}{b_2}y={c_2}\end{array}\right.$的解是$\left\{\begin{array}{l}{x=6}\\{y=12}\end{array}\right.$.

查看答案和解析>>

同步练习册答案