精英家教网 > 初中数学 > 题目详情
养鸡专业户小李要建一个露天养鸡场,鸡场的一边靠墙(墙足够长),其他边用竹篱笆围成,竹篱笆的长为40m,读九年级的儿子小军为他设计了如下方案:如图,把养鸡场围成等腰梯形ABCD,且∠ABC=120°.
(1)当AB为何值时,所围的面积是132
3
m2

(2)当AB为何值时,所围的面积最大?
(1)如图过B、C分别作BE⊥AD于E,CF⊥AD于F,
∵∠EBC=90°,
∴∠EBA=120°-90°=30°.
设AB=xm,等腰梯形ABCD的面积为ym2
则AE=
1
2
X
,BE=
3
2
x

∴BC=40-2x,AD=2AE+BC=40-x,
从而y=-
3
4
3
x2+20
3
x

当y=132
3
时,-
3
4
3
x2+20
3
x
=132
3

解得x1=12,x2=
44
3

∴当AB=12m或
44
3
m时,所围的面积是132
3
m2
;(5分)

(2)由(1)得y=-
3
4
3
x2+20
3
x
=-
3
4
3
(x-
40
3
)2+
400
3
3

∴当x=
40
3
时,y的最大值为
400
3
3
(m2)

∴当AB=
40
3
m时,所围的面积最大(9分).
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

已知抛物线的顶点是(-1,-2),且过点(1,10).求此抛物线对应的二次函数关系式______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线y=
1
2
x2
+bx+c与y轴相交于C,与x轴相交于A、B,点A的坐标为(2,0),点C的坐标为(0,-1).
(1)求抛物线的解析式;
(2)点E是线段AC上一动点,过点E作DE⊥x轴于点D,连接DC,当△DCE的面积最大时,求点D的坐标;
(3)在直线BC上是否存在一点P,使△ACP为等腰三角形?若存在,求点P的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,A、B两点的坐标分别为(-3,0)、(0,3),C点在x轴的正半轴上,且到原点的距离为1.点P、Q分别从A、B两点同时出发,以相同的速度分别向x轴、y轴的正方向作匀速直线运动,直线PQ交直线AB于D.
(1)求经过A、B、C三点的抛物线及直线AB解析式;
(2)设AP的长为m,△PBQ的面积为S,求出S关于m的函数关系式.
(3)作PE⊥AB于E,当P、Q运动时,线段DE的长是否改变?若改变请说明理由,若不改变,请求出DE的长;
(4)有一个以AB为边的,且由两个与△AOB全等的三角形拼结而成的平行四边形ABST,试求出T点的坐标(画出图形,直接写出结果,不需求解过程).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=ax2+bx+c(a≠0)经过A(-2,-3)、B(3,2)两点,且与x轴相交于M、N两点,当以线段MN为直径的圆的面积最小时,求M、N两点的坐标和四边形AMBN的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知如图,矩形OABC的长OA=
3
,宽OC=1,将△AOC沿AC翻折得△APC.
(1)求∠PCB的度数;
(2)若P,A两点在抛物线y=-
4
3
x2+bx+c上,求b,c的值,并说明点C在此抛物线上;
(3)(2)中的抛物线与矩形OABC边CB相交于点D,与x轴相交于另外一点E,若点M是x轴上的点,N是y轴上的点,以点E、M、D、N为顶点的四边形是平行四边形,试求点M、N的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(1)在Rt△ABC中,BC=3,AB=4,则AC=______.
(2)如图,在Rt△ABC中,∠ABC=90°,BC=3cm,AB=4cm.若点P从点B出发,以2cm/s的速度在BC所在的直线上运动.设点P的运动时间为t,试求当t为何值时,△ACP是等腰三角形?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某汽车制造公司计划生产A、B、C三种型号的汽车共80辆.并且公司在设计上要求,A、C两种型号之间按如图所示的函数关系生产.该公司投入资金不少于1212万元,但不超过1224万元,且所有资金全部用于生产这三种型号的汽车,三种型号的汽车生产成本和售价如下表:
ABC
成本(万元/辆)121518
售价(万元/辆)141822
设A种型号的汽车生产x辆;
(1)设C种型号的汽车生产y辆,求出y与x的函数关系式;
(2)该公司对这三种型号汽车有哪几种生产方案?
(3)设该公司卖车获得的利润W万元,求公司如何生产获得利润最大?
(4)根据市场调查,每辆A、B型号汽车的售价不会改变,每辆C型号汽车在不亏本的情况下售价将会降价a万元(a>0),且所生产的三种型号汽车可全部售出,该公司又将如何生产获得利润最大?(注:利润=售价-成本)

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

某商品的进价为每件30元,现在的售价为每件40元,每星期可卖出150件.市场调查反映:如果每件售价每涨1元(售价每件不能高于45元),那么每星期少卖10件.设每件售价为x元(x为非负整数),则若要使每星期的利润最大且每星期的销量较大,x应为多少元?(  )
A.41B.42C.42.5D.43

查看答案和解析>>

同步练习册答案