精英家教网 > 初中数学 > 题目详情
正常水位时,抛物线拱桥下的水面宽为20m,水面上升3m达到该地警戒水位时,桥下水面宽为10m.
(1)在恰当的平面直角坐标系中求出水面到桥孔顶部的距离y(m)与水面宽x(m)之间的函数关系式;
(2)如果水位以0.2m/h的速度持续上涨,那么达到警戒水位后,再过多长时间此桥孔将被淹没?
(1)建立如图1所示设抛物线的解析式为y=ax2,(1分)

可设点A的坐标为(10,h),则点B的坐标为(5,h+3)
可得二元一次方程组:h=100a(1分)
h+3=25a(1分)
解得:a=-
1
25
,h=-4,(2分)
y=-
1
25
x2
(1分)
将(
x
2
,-y)代入,
故桥孔顶部的距离y(m)与水面宽x(m)之间的函数关系式为:y=
1
100
x2
(2分)

(2)1÷0.2=5h(1分)
答:达到警戒水位后,再过5h此桥孔将被淹没(1分)
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线与x轴交于A(-1,0)、E(3,0)两点,与y轴交于点B(0,3).
(1)求抛物线的解析式;
(2)设抛物线顶点为D,求四边形AEDB的面积;
(3)△AOB与△DBE是否相似?如果相似,请给以证明;如果不相似,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)、C(8,0)、D(8,8).抛物线y=ax2+bx过A、C两点.
(1)直接写出点A的坐标,并求出抛物线的解析式;
(2)动点P从点A出发.沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD向终点D运动.速度均为每秒1个单位长度,运动时间为t秒.过点P作PE⊥AB交AC于点E.
①过点E作EF⊥AD于点F,交抛物线于点G.当t为何值时,线段EG最长?
②连接EQ.在点P、Q运动的过程中,判断有几个时刻使得△CEQ是等腰三角形?请直接写出相应的t值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,已知抛物线的顶点为A(2,1),且经过原点O,与x轴的另一个交点为B.
(1)求抛物线的解析式;
(2)若点C在抛物线的对称轴上,点D在抛物线上,且以O、C、D、B四点为顶点的四边形为平行四边形,求D点的坐标;
(3)连接OA、AB,如图2,在x轴下方的抛物线上是否存在点P,使得△OBP与△OAB相似?若存在,求出P点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,某校的围墙由一段相同的凹曲拱组成,其拱状图形为抛物线的一部分,栅栏的跨径AB间,按相同间隔0.2米用5根立柱加固,拱高OC为0.36米,则立柱EF的长为(  )
A.0.4米B.0.16米C.0.2米D.0.24米

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,排球运动员站在点O处练习发球,将球从O点正上方2m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x-6)2+h.已知球网与O点的水平距离为9m,高度为2.43m,球场的边界距O点的水平距离为18m.
(1)当h=2.6时,求y与x的关系式(不要求写出自变量x的取值范围)
(2)当h=2.6时,球能否越过球网?球会不会出界?请说明理由;
(3)若球一定能越过球网,又不出边界,求h的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图是一个抛物线形拱桥的示意图,桥的跨度AB为100米,支撑桥的是一些等距的立柱,相邻立柱的水平距离为10米(不考虑立柱的粗细),其中距A点10米处的立柱FE的高度为3.6米.
(1)求正中间的立柱OC的高度;
(2)是否存在一根立柱,其高度恰好是OC的一半?请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

医药公司推出了一种抗感冒药,年初上市后,公司经历了从亏损到盈利的过程.如图的二次函数图象(部分)表示了该公司年初以来累积利润S(万元)与时间t(月)之间的关系(即前t个月的利润总和S与t之间的关系).
根据图象提供信息,解答下列问题:
(1)公司从第几个月末开始扭亏为盈;
(2)累积利润S与时间t之间的函数关系式;
(3)求截止到几月末公司累积利润可达30万元;
(4)求第8个月公司所获利是多少元?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,平行于x轴的直线AC分别交抛物线y1=x2(x≥0)与y2=
x2
3
(x≥0)于B、C两点,过点C作y轴的平行线交y1于点D,直线DEAC,交y2于点E,则
DE
AB
=______.

查看答案和解析>>

同步练习册答案