精英家教网 > 初中数学 > 题目详情

如图,AD是ΔABC的外角∠CAE的平分线,∠B=30°,∠DAE=55°,

试求:(1)∠D的度数;     (2 )∠ACD的度数

∠D为25°,∠ACD为100°。

解析试题分析:(1)根据三角形外角的性质求出∠D的度数;      
(2)由AD是△ABC的外角∠CAE的平分线,可得∠CAD=∠DAE=55°,再根据三角形内角和定理求出∠ACD的度数.
解:(1)三角形外角的性质得:∠D=∠DAE-∠B=55°-30°=25°;
(2)∵AD是△ABC的外角∠CAE的平分线,
∴∠CAD=∠DAE=55°,
∴∠ACD=180°-∠D-∠CAD=180°-25°-55°=100°
考点:三角形的外角性质、三角形内角和定理
点评:本题考查的是三角形外角的性质及角平分线的定义,熟知三角形的外角等于与之不相邻的两个内角的和是解答此题的关键。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

14、如图,AD是△ABC的高线,且AD=2,若将△ABC及其高线平移到△A′B′C′的位置,则A′D′和B′D′位置关系是
垂直
,A′D′=
2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,AD是△ABC是角平分线,DE⊥AB于点E,DF⊥AC于点F,连接EF交AD于点G,则AD与EF的位置关系是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

16、已知:如图,AD是△ABC的角平分线,且 AB:AC=3:2,则△ABD与△ACD的面积之比为
3:2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,AD是△ABC的边BC上的中线,已知AB=5cm,AC=3cm.
(1)求△ABD与△ACD的周长之差.
(2)若AB边上的高为2cm,求AC边上的高.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AD是△ABC的中线,CE是△ACD的中线,DF是△CDE的中线,如果△DEF的面积是2,那么△ABC的面积为(  )

查看答案和解析>>

同步练习册答案