精英家教网 > 初中数学 > 题目详情
(2010•德州)已知三角形的三边长分别为:3,4,5,则它的边与半径为1的圆的公共点个数所有可能的情况是( )
A.0,1,2,3
B.0,1,2,4
C.0,1,2,3,4
D.0,1,2,4,5
【答案】分析:根据勾股定理可得三角形为直角三角形,求出三角形内切圆的半径为1,圆在不同的位置和直线的交点从没有到最多4个.
解答:解:∵32+42=25,52=25,
∴三角形为直角三角形,
设内切圆半径为r,则
(3+4+5)r=×3×4,
解得r=1,
所以应分为五种情况:
当一条边与圆相离时,有0个交点,
当一条边与圆相切时,有1个交点,
当一条边与圆相交时,有2个交点,
当圆与三角形内切圆时,有3个交点,
当两条边与圆同时相交时,有4个交点,
故公共点个数可能为0、1、2、3、4个.
故选C.
点评:本题考查线段与圆的交点的情况,需要考虑所有的可能情况,先求出内切圆半径是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源:2010年全国中考数学试题汇编《二次函数》(09)(解析版) 题型:解答题

(2010•德州)已知二次函数y=ax2+bx+c的图象经过点A(3,0),B(2,-3),C(0,-3).
(1)求此函数的解析式及图象的对称轴;
(2)点P从B点出发以每秒0.1个单位的速度沿线段BC向C点运动,点Q从O点出发以相同的速度沿线段OA向A点运动,其中一个动点到达端点时,另一个也随之停止运动.设运动时间为t秒.
①当t为何值时,四边形ABPQ为等腰梯形;
②设PQ与对称轴的交点为M,过M点作x轴的平行线交AB于点N,设四边形ANPQ的面积为S,求面积S关于时间t的函数解析式,并指出t的取值范围;当t为何值时,S有最大值或最小值.

查看答案和解析>>

科目:初中数学 来源:2010年全国中考数学试题汇编《反比例函数》(06)(解析版) 题型:解答题

(2010•德州)●探究:
(1)在图中,已知线段AB,CD,其中点分别为E,F.
①若A(-1,0),B(3,0),则E点坐标为______;
②若C(-2,2),D(-2,-1),则F点坐标为______;
(2)在图中,已知线段AB的端点坐标为A(a,b),B(c,d),求出图中AB中点D的坐标(用含a,b,c,d的代数式表示),并给出求解过程.
●归纳:
无论线段AB处于直角坐标系中的哪个位置,当其端点坐标为A(a,b),B(c,d),AB中点为D(x,y)时,x=______,y=______.(不必证明)
●运用:
在图中,一次函数y=x-2与反比例函数的图象交点为A,B.
①求出交点A,B的坐标;
②若以A,O,B,P为顶点的四边形是平行四边形,请利用上面的结论求出顶点P的坐标.

查看答案和解析>>

科目:初中数学 来源:2010年山东省德州市中考数学试卷(解析版) 题型:解答题

(2010•德州)已知二次函数y=ax2+bx+c的图象经过点A(3,0),B(2,-3),C(0,-3).
(1)求此函数的解析式及图象的对称轴;
(2)点P从B点出发以每秒0.1个单位的速度沿线段BC向C点运动,点Q从O点出发以相同的速度沿线段OA向A点运动,其中一个动点到达端点时,另一个也随之停止运动.设运动时间为t秒.
①当t为何值时,四边形ABPQ为等腰梯形;
②设PQ与对称轴的交点为M,过M点作x轴的平行线交AB于点N,设四边形ANPQ的面积为S,求面积S关于时间t的函数解析式,并指出t的取值范围;当t为何值时,S有最大值或最小值.

查看答案和解析>>

科目:初中数学 来源:2010年山东省德州市中考数学试卷(解析版) 题型:选择题

(2010•德州)已知三角形的三边长分别为:3,4,5,则它的边与半径为1的圆的公共点个数所有可能的情况是( )
A.0,1,2,3
B.0,1,2,4
C.0,1,2,3,4
D.0,1,2,4,5

查看答案和解析>>

同步练习册答案