精英家教网 > 初中数学 > 题目详情
精英家教网如图,四边形ABCD内有一点E,AE=BE=DE=BC=DC,AB=AD,若∠C=100°,则∠BAD的大小是(  )
A、25°B、50°C、60°D、80°
分析:由题干BE=DE=BC=DC,可知四边形BECD为菱形,又∠C=100°,所以∠BED=100°,∠CBE=∠CDE=80°.连接BD,易知AE、BE、DE是△ABD的角平分线.再根据菱形的性质即可得出答案.
解答:精英家教网解:连接BD,并延长AE交BD于点O,
∵AE=BE=DE=BC=DC,AB=AD,∴四边形BCDE是菱形,
∴AE、BE、DE是△ABD的角平分线.
∴A、E、O、C四点共线,
∵∠C=100°,∴∠BED=50°,
∴∠BEO=
1
2
∠BED=50°,
∴∠ABE=25°,
∴∠BAD=50°,
故选B.
点评:本题主要是考查学生对三角形的性质及角平分线的灵活运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,四边形ABCD的对角线AC与BD互相垂直平分于点O,设AC=2a,BD=2b,请推导这个四边形的性质.(至少3条)
(提示:平面图形的性质通常从它的边、内角、对角线、周长、面积等入手.)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD的对角线AC、BD交于点P,过点P作直线交AD于点E,交BC于点F.若PE=PF,且AP+AE=CP+CF.
(1)求证:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,四边形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD为正方形,E是BC的延长线上的一点,且AC=CE,求∠DAE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD是正方形,点E是BC的中点,∠AEF=90°,EF交正方形外角的平分线CF于F.

(I)求证:AE=EF;
(Ⅱ)若将条件中的“点E是BC的中点”改为“E是BC上任意一点”,其余条件不变,则结论AE=EF还成立吗?若成立,请证明;若不成立,请说明理由.

查看答案和解析>>

同步练习册答案