精英家教网 > 初中数学 > 题目详情

【题目】1)操作发现:如图①,点D是等边ABC的边AB上一动点(点D与点B不重合),连接CD,以CD为边在CD上方作等边CDE,连接AE,则AEBD有怎样的数量关系?说明理由.

2)类比猜想:如图②,若点D是等边ABC的边BA延长线上一动点,连接CD,以CD为边在CD上方作等边CDE,连接AE,请直接写出AEBD满足的数量关系,不必说明理由;

3)深入探究:如图③,点D是等边ABC的边AB上一动点(点D与点B不重合),连接CD,以CD为边分别在CD上方、下方作等边CDE和等边CDF,连接AEBFAEBFAB有怎样的数量关系?说明理由.

【答案】(1)AEBD(2)AEBD;(3AE+BFAB

【解析】

(1)根据等边三角形的三条边、三个内角都相等的性质,利用全等三角形的判定定理SAS可以证得BCD≌△ACE;然后由全等三角形的对应边相等知AE=BD

(2)通过证明BCD≌△ACE,即可证明AE=BD;

(3)1.AF+BF=AB;利用全等三角形BCD≌△ACE(SAS)的对应边BDAE;同理BCF≌△DCA (SAS),BFAD,所以AE+BF =AB

解:(1AEBD,理由如下:

∵△ABCDCE都是等边三角形,

ACBCCDCE,∠ACB=∠DCE60°

∴∠ACB﹣∠ACD=∠DCE﹣∠ACD

即∠BCD=∠ACE

BCDACE中,

∴△BCD≌△ACESAS),

AEBD

2AEBD

理由如下:∵△ABCDCE都是等边三角形,

ACBCCDCE,∠ACB=∠DCE60°

∴∠ACB+ACD=∠DCE+ACD

即∠BCD=∠ACE

在△BCD和△ACE中,

∴△BCD≌△ACESAS),

AEBD

3AE+BFAB

证明如下:由(1)知,△BCD≌△ACESAS),

BDAE

同理可证,△BCF≌△DCASAS),

BFAD

ABAD+BDAE+BF

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】我们约定,在平面直角坐标系中,经过象限内某点且平行于坐标轴或平行于两坐标轴夹角平分线的直线,叫该点的“参照线”.例如,点的参照线有:(如图1).

如图2,正方形在平面直角坐标系中,点在第一象限,点分别在轴和轴上,点在正方形内部.

1)直接写出点的所有参照线:

2)若,点在线段的垂直平分线上,且点有一条参照线是,则点的坐标是_______________

3)在(2)的条件下,点边上任意一点(点不与点重合),连接,将沿着折叠,点的对应点记为.当点在点的平行于坐标轴的参照线上时,写出相应的折痕所在直线的解析式:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形中,的中点,于点

1)求证:四边形是菱形.

2)若,求的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,ABC中,ADBC边上的中线,则有SABDSACD,许多面积问题可以转化为这个基本模型解答.如图②,已知ABC的面积为1,把ABC各边均顺次延长一倍,连结所得端点,得到A1B1C1,即将ABC向外扩展了一次,则扩展一次后的A1B1C1的面积是_____,如图③,将ABC向外扩展了两次得到A2B2C2……,若将ABC向外扩展了n次得到AnBnn,则扩展n次后得到的AnBnn面积是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,抛物线的顶点为D.

1)求点D的坐标(用含m的代数式表示);

2)若该抛物线经过点A1m),求m的值;

3)在(2)的条件下,抛物线与x轴是否有交点,若有,求出交点坐标,若没有,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等边中,分别为的中点,延长至点,使,连结

1)求证:

2)猜想:的面积与四边形的面积的关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知A ,D,B,E在同一条直线上,且AD = BE, AC = DF,补充下列其中一个条件后,不一定能得到ABCDEF 的是(

A.BC = EFB.AC//DFC.C = FD.BAC = EDF

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某县为落实“精准扶贫惠民政策”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的15倍.如果由甲、乙队先合作施工15天,那么余下的工程由甲队单独完成还需5天.

(1)这项工程的规定时间是多少天?

(2)为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙两队合作完成.则甲、乙两队合作完成该工程需要多少天?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某班将举行“数学知识竞赛”活动,班长安排小明购买奖品,下面两图是小明买回奖品时与班长的对话情境:

请根据上面的信息,解决问题:

(1)试计算两种笔记本各买了多少本?

(2)请你解释:小明为什么不可能找回68元?

查看答案和解析>>

同步练习册答案