精英家教网 > 初中数学 > 题目详情
如图,二次函数y=-
1
2
x2+c
的图象经过点D(-
3
9
2
)
,与x轴交于A、B两点.
精英家教网
(1)求c的值;
(2)如图①,设点C为该二次函数的图象在x轴上方的一点,直线AC将四边形ABCD的面积二等分,试证明线段BD被直线AC平分,并求此时直线AC的函数解析式;
(3)设点P、Q为该二次函数的图象在x轴上方的两个动点,试猜想:是否存在这样的点P、Q,使△AQP≌△ABP?如果存在,请举例验证你的猜想;如果不存在,请说明理由.(图②供选用)
分析:(1)将D点坐标代入抛物线的解析式中,即可求出待定系数c的值;
(2)若△ACD与△ABC的面积相等,则两个三角形中,AC边上的高相等,设AC、BD的交点为E,若以CE为底,AC边上的高为高,可证得△CED和△CEB的面积相等;这两个三角形中,若以DE、BE为底,则两个三角形同高,那么DE=BE,由此可证得AC平分BD;
由于E是BD的中点,根据B、D的坐标,即可求出E点的坐标,根据A、E的坐标即可用待定系数法求出直线AC的解析式;
(3)设抛物线顶点为N(0,6),在Rt△AON中,易得AN=4
3
,于是以A点为圆心,AB=4
3
为半径作圆与抛物线在x轴上方一定有交点Q,连接AQ,再作∠QAB平分线AP交抛物线于P,连接BP,PQ,此时由“边角边”易得△AQP≌△ABP.
解答:精英家教网解:(1)∵抛物线经过D(-
3
9
2
),则有
-
1
2
×3+c=
9
2

解得c=6;

(2)设AC与BD的交点为E,过D作DM⊥AC于M,过B作BN⊥AC于N
∵S△ADC=S△ACB
1
2
AC•DM=
1
2
AC•BN,即DM=BN;
1
2
CE•DM=
1
2
CE•BN,
即S△CED=S△BEC(*);
设△BCD中,BD边上的高为h,由(*)得:
 
1
2
DE•h=
1
2
BE•h,即BE=DE,故AC平分BD;
易知:A(-2
3
,0),B(2
3
,0),D(-
3
9
2
),
由于E是BD的中点,则E(
3
2
9
4
);
设直线AC的解析式为y=kx+b,则有:
 
-2
3
k+b=0
3
2
k+b=
9
4

精英家教网解得
k=
3
3
10
b=
9
5

∴直线AC的解析式为y=
3
3
10
x+
9
5


(3)存在.
设抛物线顶点为N(0,6),在Rt△AON中,易得AN=4
3

于是以A点为圆心,AB=4
3
为半径作圆与抛物线在x轴上方一定有交点Q,连接AQ,
再作∠QAB平分线AP交抛物线于P,连接BP,PQ,
此时由“边角边”易得△AQP≌△ABP.
点评:此题主要考查了一次函数与二次函数解析式的确定、三角形面积的求法、以及全等三角形和直角三角形的判定和性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,二次函数的图象经过点D(0,
7
9
3
),且顶点C的横坐标为4,该图象在x轴上截得的线段AB的长为6.
(1)求二次函数的解析式;
(2)在该抛物线的对称轴上找一点P,使PA+PD最小,求出点P的坐标;
(3)在抛物线上是否存在点Q,使△QAB与△ABC相似?如果存在,求出点Q的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,二次函数图象的顶点为坐标原点O,且经过点A(3,3),一次函数的图象经过点A和点B(6,0).
(1)求二次函数与一次函数的解析式;
(2)如果一次函数图象与y相交于点C,点D在线段AC上,与y轴平行的直线DE与二次函数图象相交于点E,∠CDO=∠OED,求点D的坐标.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,二次函数y=ax2+bx+c的图象与x轴交于B、C两点,与y轴交于点A(0,-3),∠ABC=45°,∠ACB=60°,求这个二次函数解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到盈利的过程,如图的二次函数图象(部分)刻画了该公司年初以来累积利润s(万元)与时间t(月)之间的关系(即前t个月的利润总和s与t之间的关系).根据图象提供的信息,解答下列问题:
(1)求累积利润s(万元)与时间t(月)之间的函数关系式;
(2)求截止到几月末公司累积利润可达30万元;
(3)从第几个月起公司开始盈利?该月公司所获利润是多少万元?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,二次函数y=ax2+bx+c的图象与x轴相交于两个点,根据图象回答:(1)b
0(填“>”、“<”、“=”);
(2)当x满足
x<-4或x>2
x<-4或x>2
时,ax2+bx+c>0;
(3)当x满足
x<-1
x<-1
时,ax2+bx+c的值随x增大而减小.

查看答案和解析>>

同步练习册答案