分析 (1)如图,连接OA,由AE为⊙O的切线,BD⊥AE得到∠DAO=∠EDB=90°,于是得到DB∥AO,推出∠DBA=∠BAO,由于OA=OB,得到∠ABC=∠BAO,即可得到结论;
(2)根据三角函数的知识可求出AD,从而根据勾股定理求出AB的长,根据三角函数的知识即可得出⊙O的半径.
解答 (1)证明:如图,连接OA,
∵AE为⊙O的切线,BD⊥AE,
∴∠DAO=∠EDB=90°,
∴DB∥AO,
∴∠DBA=∠BAO,
又∵OA=OB,
∴∠ABC=∠BAO,
∴∠DBA=∠ABC;
(2)解:∵BD=1,tan∠BAD=$\frac{1}{2}$,
∴AD=2,
∴AB=$\sqrt{{2}^{2}{+1}^{2}}$=$\sqrt{5}$,
∴cos∠DBA=$\frac{\sqrt{5}}{5}$;
∵∠DBA=∠CBA,
∴BC=$\frac{AB}{cos∠CBA}$=$\frac{\sqrt{5}}{\frac{\sqrt{5}}{5}}$=5.
∴⊙O的半径为2.5.
点评 本题考查了切线的判定.已知某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),可得垂直,同时考查了三角函数的知识.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | (1)(2) | B. | (1)(3) | C. | (2)(3) | D. | (1)(2)(3) |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 事件A发生的频率是$\frac{7}{100}$ | |
B. | 反复大量做这种试验,事件A只发生了7次 | |
C. | 做100次这种试验,事件A一定发生7次 | |
D. | 做100次这种试验,事件A可能发生7次 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com