分析 先根据分式混合运算的法则把原式进行化简,再把x的值,代入原式进行计算即可.
解答 解:原式=$\frac{(1+x)^{2}}{(1+x)(1-x)}$÷$\frac{2x-x+{x}^{2}}{1-x}$=$\frac{(1+x)^{2}}{(1+x)(1-x)}$•$\frac{1-x}{x(1+x)}$=$\frac{1}{x}$,
当x=$\sqrt{5}$-2时,$\frac{1}{x}$=$\frac{1}{\sqrt{5}-2}$=$\frac{\sqrt{5}+2}{(\sqrt{5}-2)(\sqrt{5}+2)}$=$\sqrt{5}$+2.
点评 本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | B. | ||||
C. | D. |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
折纸三等分角 三等分角问题(trisection of an angle)是二千四百年前,古希腊人提出的几何三大作图问题之一(三等分任意角、化圆为方、倍立方),即用圆规与直尺(没有刻度,只能做直线的尺子)把一任意角三等分,这问题曾吸引着许多人去研究,但无一成功.1837年法国数学家凡齐尔(1814~1848)运用代数方法证明了,仅用尺规不可鞥呢三等分角. 如果作图工具没有限制,将条件放宽,将任意角三等分是可以解决的.下面介绍一种折纸三等分任意锐角的方法: (1)在正方形纸片上折出任意∠SBC,将正方形ABCD对折,折痕为记为MN,再将矩形MBCN对折,折痕记为EF,得到图(1); (2)翻折左下角使点B与EF上的点T重合,点M与SB上的点P重合,点E对折后的对应点记为Q,折痕为记为GH,得到图(2); (3)折出射线BQ,BT,得到图(3),则射线BQ,BT就是∠SBC的三等分线. 下面是证明BQ,BT是∠SBC三等分线的部分过程: 证明:过T作TK⊥BC,垂足为K,则四边形EBKT为矩形 根据折叠,得EB=QT,∠EBT=∠QTB,BT=TB ∴△EBT≌△QTB, ∴∠BQT=∠TEB=90°, ∴BQ⊥PT … |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com