精英家教网 > 初中数学 > 题目详情

【题目】已知直线可变形为:,则点P)到直线的距离d可用公式计算

例如:求点P(-2,1)到直线的距离

解:因为直线可变形为,其中

所以点P(-2,1)到直线的距离为

根据以上材料求:

(1)点P(2,-1)到直线的距离;

(2)已知M为直线上的点,且M到直线的距离为,求M的坐标;

(3)已知线段上的点到直线的最小距离为1,求k的值

【答案】(1);(2)M(6,-4)或M(-4,6);(3)

【解析】1)将P的坐标代入点到直线的距离公式即可直接求出答案

(2)利用距离公式建立方程即可求解;

(3)利用点到直线的距离公式和待定系数法即可求出答案

(1)直线化为:,其中

(2)设M),直线化为:,其中k=2,,故M到直线的距离为:

M(6,-4)或M(-4,6)

(3)设上到直线距离为1的点为()或(

直线化为,其中

把()代入

∵直线的交点横坐标为

同理,将()代入距离公式,得

舍去)

综上所述,

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,BM是∠ABC的平分线,交CD于点M,且DM2,平行四边形ABCD的周长是14,则BC的长等于(  )

A. 2B. 2.5C. 3D. 3.5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,方格纸中每个小正方形的边长为1个单位长度,三角形ABC的顶点都在格点上,将三角形ABC向右平移2个单位长度,再向上平移3个单位长度,得到三角形A′B′C′

(1)请在图中画出三角形A′B′C′;

(2)求三角形ABC的面积

(3)AC的长约为2.8,则边AC上的高约为多少?(结果保留分数)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题背景
如图1,在正方形ABCD的内部,作∠DAE=∠ABF=∠BCG=∠CDH,根据三角形全等的条件,易得△DAE≌△ABF≌△BCG≌△CDH,从而得到四边形EFGH是正方形。
类比研究
如图2,在正△ABC的内部,作∠BAD=∠CBE=∠ACF,AD,BE,CF两两相交于D,E,F三点(D,E,F三点不重合)。

(1)△ABD,△BCE,△CAF是否全等?如果是,请选择其中一对进行证明;
(2)△DEF是否为正三角形?请说明理由;
(3)进一步探究发现,△ABD的三边存在一定的等量关系,设 ,请探索 满足的等量关系。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我国三国时期数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”,如图1所示.在图2中,若正方形ABCD的边长为14,正方形IJKL的边长为2,且IJ//AB,则正方形EFGH的边长为.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在△ABC中,∠A=30°,点P从点A出发以2cm/s的速度沿折线A—C—B运动,点Q从点A出发以a(cm/s)的速度沿AB运动,P,Q两点同时出发,当某一点运动到点B时,两点同时停止运动.设运动时间为x(s),△APQ的面积为y(cm2),y关于x的函数图象由C1 , C2两段组成,如图2所示.

(1)求a的值;
(2)求图2中图象C2段的函数表达式;
(3)当点P运动到线段BC上某一段时△APQ的面积,大于当点P在线段AC上任意一点时△APQ的面积,求x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线的解析表达式为,且轴交于点.直线经过点,直线交于点

(1)求点的坐标;

(2)求直线的解析表达式;

(3)求的面积;

(4)在直线上存在异于点的另一个点,使得的面积相等,求点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB=4cmAD=12cmP点在AD边上以每秒1cm的速度从AD运动,点QBC边上,以每秒4cm的速度从C点出发,在CB间往返运动,二点同时出发,待P点到达D点为止,在这段时间内,线段PQ有( )次平行于AB

A1 B2 C3 D4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,对于任意一点P(x,y),我们做以下规定:d(P)=|x|+|y|,称d(P)为点P的坐标距离.

(1)已知:点P(3,﹣4),求点P的坐标距离d(P)的值.

(2)如图,四边形OABC为正方形,且点A、B在第一象限,点C在第四象限.

①求证:d(A)=d(C).

②若OC=2,且满足d(A)+d(C)=d(B)+2,求点B坐标.

查看答案和解析>>

同步练习册答案