精英家教网 > 初中数学 > 题目详情

如图,在?ABCD中,DE⊥AB于点E,BF⊥AD于点F,
(1)说明:数学公式
(2)?ABCD周长为12,AD:DE=3:2,求DE+BF的值.

(1)证明:∵在?ABCD中,DE⊥AB,BF⊥AD,
∴S?ABCD=AB•DE=AD•BF,
=

(2)∵=,且=
==
又∵?ABCD的周长为12,
∴AD+AB=×12=6,
=
∴DE+BF=4.
分析:(1)根据平行四边形的面积公式:S=底×高,可得:S?ABCD=AB•DE=AD•BF,再把AB•DE=AD•BF进行变形可得=
(2)根据=,由比例的基本性质可得=,再由条件AD:DE=3:2,可知==,由?ABCD周长为12,可得AD+AB的长,代入==中即可算出DE+BF的长.
点评:此题主要考查了平行四边形的性质、面积求法、以及比例的基本性质,关键是熟练掌握平行四边形的面积公式:面积=底×高.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在?ABCD中,对角线AC、BD相交于点O,AB=
29
,AC=4,BD=10.
问:(1)AC与BD有什么位置关系?说明理由.
(2)四边形ABCD是菱形吗?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

18、如图,在?ABCD中,∠A的平分线交BC于点E,若AB=10cm,AD=14cm,则EC=
4
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•长春一模)感知:如图①,在菱形ABCD中,AB=BD,点E、F分别在边AB、AD上.若AE=DF,易知△ADE≌△DBF.
探究:如图②,在菱形ABCD中,AB=BD,点E、F分别在BA、AD的延长线上.若AE=DF,△ADE与△DBF是否全等?如果全等,请证明;如果不全等,请说明理由.
拓展:如图③,在?ABCD中,AD=BD,点O是AD边的垂直平分线与BD的交点,点E、F分别在OA、AD的延长线上.若AE=DF,∠ADB=50°,∠AFB=32°,求∠ADE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•犍为县模拟)甲题:已知关于x的一元二次方程x2=2(1-m)x-m2的两实数根为x1,x2
(1)求m的取值范围;
(2)设y=x1+x2,当y取得最小值时,求相应m的值,并求出最小值.
乙题:如图,在?ABCD中,BE⊥AD于点E,BF⊥CD于点F,AC与BE、BF分别交于点G,H.
(1)求证:△BAE∽△BCF.
(2)若BG=BH,求证:四边形ABCD是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在?ABCD中,∠ADB=90°,CA=10,DB=6,OE⊥AC于点O,连接CE,则△CBE的周长是
2
13
+4
2
13
+4

查看答案和解析>>

同步练习册答案