精英家教网 > 初中数学 > 题目详情
20.在糖水中继续放入糖x(g)、水y(g),并使糖完全溶解,如果甜度保持不变,那么y与x的函数关系一定是(  )
A.正比例函数B.反比例函数
C.图象不经过原点的一次函数D.二次函数

分析 设原来溶液中糖和水分别有ag和bg,为了保持甜度保持不变,则x:y=a:b,于是可作出判断.

解答 解:设原来溶液中糖和水分别有ag和bg.
根据题意可知x:y=a:b,整理得:y=$\frac{b}{a}x$.
故选:A.

点评 本题主要考查的是一次函数的定义,根据题题意列出函数关系式是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

2.计算:($\frac{1}{3}$)-1-$\sqrt{27}$+tan60°+|3-2$\sqrt{3}$|.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.已知数轴甲上有A、B、C三点,分别表示-30、-20、0,动点M从点A出发,以每秒1个单位的速度向终点C移动,设点M移动的时间为t秒,点M在数轴甲上表示的数为m.
(1)用含有t的代数式表示m=t-30(0≤t≤30).
(2)另有一个数轴乙,数轴乙上有D、E两点,分别表示-60、0.当点M运动到点B时,数轴乙上的动点N从点D出发,以点M速度的4倍向点E运动,当N到达点E后,再立即以同样的速度返回,当点M到达点C时,M、N两点运动停止,设点N在数轴乙上表示数n.
①当点N从点D出发,向点E运动时,用含有t的代数式表示n=4t-100(10≤t≤25);当点N到达点E后返回时,用含有t的代数式表示n=100-4t(25<t).
 ②求当点N从开始运动到运动停止时,m-n的值(用含t的代数式表示)
 ③求当t为何值时,m=n.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.二次函数y=ax2+bx+c的图象经过点(-1,4),且与直线y=-$\frac{1}{2}$x+1相交于A、B两点(如图),A点在y轴上,过点B作BC⊥x轴,垂足为点C(-3,0).
(1)求二次函数的表达式;
(2)点N是二次函数图象上一点(点N在AB上方),过N作NP⊥x轴,垂足为点P,交AB于点M,求MN的最大值;
(3)在(2)的条件下,是否存在点N,使得BM与NC相互垂直平分?若存在,求出所有满足条件的N点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.如图,AE是正八边形ABCDEFGH的一条对角线,则∠BAE=67.5°.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.如图,OD是⊙O的半径,弦AB⊥OD于E,若∠O=70°,则∠A+∠C=55度.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.课外兴趣小组活动时,老师提出了如下问题:
(1)如图1,△ABC中,若AB=5,AC=3,求BC边上的中线AD的取值范围.
小明在组内经过合作交流,得到了如下的解决方法:
延长AD到E,使得DE=AD,再连接BE(或将△ACD绕点D逆时针旋转180°得到△EBD),把AB、AC、2AD集中在△ABE中,利用三角形的三边关系可得2<AE<8,则1<AD<4.

感悟:解题时,条件中若出现“中点”“中线”字样,可以考虑构造以中点为对称中心的中心对称图形或全等三角形,把分散的已知条件和所求证的结论集中到同一个三角形中.
(2)问题解决:
受到(1)的启发,请你证明下面命题:如图2,在△ABC中,D是BC边上的中点,DE⊥DF,DE交AB于点E,DF交AC于点F,连接EF.
①求证:BE+CF>EF;②若∠A=90°,探索线段BE、CF、EF之间的等量关系,并加以证明;
(3)问题拓展:
如图3,在四边形ABDC中,∠B+∠C=180°,DB=DC,∠BDC=120°,以D为顶点作∠EDF为60°角,角的两边分别交AB、AC于E、F两点,连接EF,探索线段BE、CF、EF之间的数量关系,并加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.已知点P在抛物线y=$\frac{1}{2}$x2上,以点P为圆心,1为半径的⊙P与x轴相切,则点P的坐标为(-$\sqrt{2}$,1)或($\sqrt{2}$,1).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.如图,菱形ABCD中,∠A=60°,将纸片折叠,点A,D分别落在A′,D′处,且A′D′经过点B,EF为折痕,当D′F⊥CD时,$\frac{CF}{FD}$的值为$\frac{\sqrt{3}-1}{2}$.

查看答案和解析>>

同步练习册答案