精英家教网 > 初中数学 > 题目详情
19.如图,在?ABCD中,点E、F分别在AD、BC上,且AE=CF,EF、BD相交于点O,求证:OE=OF.

分析 方法1、连接BE、DF,由已知证出四边形BEDF是平行四边形,即可得出结论.
方法2、先判断出DE=BF,进而判断出△DOE≌△BOF即可.

解答 证明:方法1,连接BE、DF,如图所示:
∵四边形ABCD是平行四边形,
∴AD∥BC,AD=BC,
∵AE=CF,
∴DE=BF,
∴四边形BEDF是平行四边形,
∴OF=OE.
方法2,∵四边形ABCD是平行四边形,
∴AD∥BC,AD=BC,
∵∠ODE=∠OBF,AE=CF,
∴DE=BF,
在△DOE和△BOF中,$\left\{\begin{array}{l}{∠DOE=∠BOF}\\{∠ODE=∠OBF}\\{DE=BF}\end{array}\right.$,
∴△DOE≌△BOF(AAS),
∴OE=OF.

点评 本题考查了平行四边形的判定与性质;通过作辅助线证明四边形BEDF是平行四边形是解决问题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

9.在平面直角坐标系中,借助直角三角板可以找到一元二次方程的实数根.比如对于方程x2-5x+2=0,操作步骤是:
第一步:根据方程的系数特征,确定一对固定点A(0,1),B(5,2);
第二步:在坐标平面中移动一个直角三角板,使一条直角边恒过点A,另一条直角边恒过点B;
第三步:在移动过程中,当三角板的直角顶点落在x轴上点C处时,点C的横坐标m即为该方程的一个实数根(如图1);
第四步:调整三角板直角顶点的位置,当它落在x轴上另一点D处时,点D的横坐标n即为该方程的另一个实数根.

(1)在图2中,按照“第四步”的操作方法作出点D(请保留作出点D时直角三角板两条直角边的痕迹);
(2)结合图1,请证明“第三步”操作得到的m就是方程x2-5x+2=0的一个实数根;
(3)上述操作的关键是确定两个固定点的位置.若要以此方法找到一元二次方程ax2+bx+c=0(a≠0,b2-4ac≥0)的实数根,请你直接写出一对固定点的坐标;
(4)实际上,(3)中的固定点有无数对,一般地,当m1,n1,m2,n2与a,b,c之间满足怎样的关系时,点P(m1,n1),Q(m2,n2)就是符合要求的一对固定点?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.某运动会颁奖台如图所示,它的主视图是(  )
A.B.
C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.在“三角尺拼角”实验中,小明同学把一副三角尺按如图所示的方式放置,则∠1=120°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,矩形ABCD中,∠ABD、∠CDB的平分线BE、DF分别交边AD、BC于点E、F.
(1)求证:四边形BEDF是平行四边形;
(2)当∠ABE为多少度时,四边形BEDF是菱形?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.小强为测量一路灯杆AB的高度,在灯光下,小强在C处的影长为3米,沿BC方向行走了5米到E处,此时小强的影长为5米,若小强身高为1.7米,求路灯杆AB的高度.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.如图,△ABC中,∠BAC=90°,AB=3,AC=4,点D是BC的中点,将△ABD沿AD翻折得到△AED,连CE,则线段CE的长等于(  )
A.2B.$\frac{5}{4}$C.$\frac{5}{3}$D.$\frac{7}{5}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.甘肃省省府兰州,又名金城,在金城,黄河母亲河通过自身文化的演绎,衍生和流传了独特的“金城八宝”美食,“金城八宝”美食中甜品类有:味甜汤糊“灰豆子”、醇香软糯“甜胚子”、生津润肺“热冬果”、香甜什锦“八宝百合”;其他类有:青白红绿“牛肉面”、酸辣清凉“酿皮子”、清爽溜滑“浆水面”、香醇肥美“手抓羊肉”,李华和王涛同时去品尝美食,李华准备在“甜胚子、牛肉面、酿皮子、手抓羊肉”这四种美食中选择一种,王涛准备在“八宝百合、灰豆子、热冬果、浆水面”这四种美食中选择一种.(甜胚子、牛肉面、酿皮子、手抓羊肉分别记为A,B,C,D,八宝百合、灰豆子、热冬果、浆水面分别记为E,F,G,H)
(1)用树状图或表格的方法表示李华和王涛同学选择美食的所有可能结果;
(2)求李华和王涛同时选择的美食都是甜品类的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.能用平方差公式计算的是(  )
A.(-x+2y)(x-2y)B.(2x-y)(2y+x)C.(m-n)(n-m)D.99×101

查看答案和解析>>

同步练习册答案