分析 方法1、连接BE、DF,由已知证出四边形BEDF是平行四边形,即可得出结论.
方法2、先判断出DE=BF,进而判断出△DOE≌△BOF即可.
解答 证明:方法1,连接BE、DF,如图所示:
∵四边形ABCD是平行四边形,
∴AD∥BC,AD=BC,
∵AE=CF,
∴DE=BF,
∴四边形BEDF是平行四边形,
∴OF=OE.
方法2,∵四边形ABCD是平行四边形,
∴AD∥BC,AD=BC,
∵∠ODE=∠OBF,AE=CF,
∴DE=BF,
在△DOE和△BOF中,$\left\{\begin{array}{l}{∠DOE=∠BOF}\\{∠ODE=∠OBF}\\{DE=BF}\end{array}\right.$,
∴△DOE≌△BOF(AAS),
∴OE=OF.
点评 本题考查了平行四边形的判定与性质;通过作辅助线证明四边形BEDF是平行四边形是解决问题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 2 | B. | $\frac{5}{4}$ | C. | $\frac{5}{3}$ | D. | $\frac{7}{5}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com