【题目】如图,点E在正方形ABCD的边CD上运动,AC与BE相交于点F
(1)如图1,当点E运动到DC的中点时,求△ABF与四边形ADEF的面积之比;
(2)如图2,当点E运动到CE:ED=2:1时,求△ABF与四边形ADEF的面积之比;
(3)当点E运动到CE:ED=n:1时(n是正整数),猜想△ABF与四边形ADEF的面积之比(只写结果,不要求写过程).
【答案】(1);(2);(3)
【解析】
连接DF,根据相似的知识点,可知△FEC∽△FBA,则可得出△FEC与△FBA的面积比.
(1)根据相似的性质可得:,再根据S△DEF=S△CEF,S△ABF=S△ADF,则可得到 △ABF与四边形ADEF的面积之比;
(2)根据相似的性质可得:,再根据2S△DEF=S△CEF,S△ABF=S△ADF,则可得到 △ABF与四边形ADEF的面积之比;
(3)根据相似的性质可得:,再根据nS△DEF=S△CEF,S△ABF=S△ADF,则可得到 △ABF与四边形ADEF的面积之比;
(1)如图1,连接DF.
因为点E为CD的中点,所以,S△DEF=S△CEF;
根据题意可证△FEC∽△FBA,所以=;
在正方形ABCD中,AD=AB,∠DAF=∠BAF=45°,且AF=AF,
所以△DAF≌△BAF,所以S△ABF=S△ADF.
因为S△DEF=S△CEF,S△ABF=S△ADF, 所以.
(2)如图2,连接DF.
由(1)可知,,则,且2S△DEF=S△CEF,S△ABF=S△ADF.
所以.
(3)由(1)(2)的规律可知:
当CE:ED=n:1时(n是正整数),,则,
且nS△DEF=S△CEF,S△ABF=S△ADF.
.
科目:初中数学 来源: 题型:
【题目】对于二次函数和一次函数,我们把 称为这两个函数的“再生二次函数”,其中t是不为零的实数,其图象记作抛物线E.现有点A(1,0)和抛物线E上的点B(2,n),请完成下列任务:
(尝试)
(1)当t=2时,抛物线的顶点坐标为 .
(2)判断点A是否在抛物线E上;
(3)求n的值.
(发现)通过(2)和(3)的演算可知,对于t取任何不为零的实数,抛物线E总过定点,定点的坐标 .
(应用)二次函数是二次函数和一次函数 的一个“再生二次函数”吗?如果是,求出t的值;如果不是,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,科技小组准备用材料围建一个面积为60m2的矩形科技园ABCD,其中一边AB靠墙,墙长为12m,设AD的长为m,DC的长为m。
(1)求与之间的函数关系式;
(2)根据实际情况,对于(1)式中的函数自变量能否取值为4m,若能,求出的值,若不能,请说明理由;
(3)若围成矩形科技园ABCD的三边材料总长不超过26m,材料AD和DC的长都是整米数,求出满足条件的所有围建方案。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A(﹣1,0),B(3,0)两点,与y轴相交于点C(0,﹣3).
(1)求这个二次函数的表达式;
(2)若P是第四象限内这个二次函数的图象上任意一点,PH⊥x轴于点H,与BC交于点M,连接PC.
①求线段PM的最大值;
②当△PCM是以PM为一腰的等腰三角形时,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(10分)如图1,在Rt△ABC中,∠B=90°,BC=2AB=8,点D,E分别是边BC,AC的中点,连接DE. 将△EDC绕点C按顺时针方向旋转,记旋转角为α.
(1)问题发现
① 当时,;② 当时,
(2)拓展探究
试判断:当0°≤α<360°时,的大小有无变化?请仅就图2的情况给出证明.
(3)问题解决
当△EDC旋转至A、D、E三点共线时,直接写出线段BD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,BC为⊙O的切线,D为⊙O上的一点,CD=CB,延长CD交BA的延长线于点E.
(1)求证:CD为⊙O的切线;
(2)若OF⊥BD于点F,且OF=2,BD=4,求图中阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学九(1)班为了了解全班学生喜欢球类活动的情况,采取全面调查的方法,从足球、乒乓球、篮球、排球等四个方面调查了全班学生的兴趣爱好,根据调查的结果组建了4个兴趣小组,并绘制成如图所示的两幅不完整的统计图(如图①,②,要求每位学生只能选择一种自己喜欢的球类),请你根据图中提供的信息解答下列问题:
(1)九(1)班的学生人数为 ,并把条形统计图补充完整;
(2)扇形统计图中m= ,n= ,表示“足球”的扇形的圆心角是 度;
(3)排球兴趣小组4名学生中有3男1女,现在打算从中随机选出2名学生参加学校的排球队,请用列表或画树状图的方法求选出的2名学生恰好是1男1女的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,反比例函数y=的图象与一次函数y=ax﹢b的图象交于C(4,﹣3),E(﹣3,4)两点.且一次函数图象交y轴于点A.
(1)求反比例函数与一次函数的解析式;
(2)求△COE的面积;
(3)点M在x轴上移动,是否存在点M使△OCM为等腰三角形?若存在,请你直接写出M点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】初一(1)班针对“你最喜爱的课外活动项目”对全班学生进行调查(每名学生分别选一个活动项目),并根据调查结果列出统计表,绘制成扇形统计图.
男、女生所选项目人数统计表
项目 | 男生(人数) | 女生(人数) |
机器人 | 7 | 9 |
3D打印 | m | 4 |
航模 | 2 | 2 |
其他 | 5 | n |
根据以上信息解决下列问题:
(1)m= ,n= ;
(2)扇形统计图中机器人项目所对应扇形的圆心角度数为 °;
(3)从选航模项目的4名学生中随机选取2名学生参加学校航模兴趣小组训练,请用列举法(画树状图或列表)求所选取的2名学生中恰好有1名男生、1名女生的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com