精英家教网 > 初中数学 > 题目详情

如图,在直角坐标系xOy中,二次函数y=x2+(2k-1)x+k+1的图象与x轴相交于O、A两点.

(1)求这个二次函数的解析式;

(2)在这条抛物线的对称轴右边的图象上有一点B,使△AOB的面积等于6,求点B的坐标;

(3)对于(2)中的点B,在此抛物线上是否存在点P,使∠POB=90°?若存在,求出点P的坐标,并求出△POB的面积;若不存在,请说明理由.

答案:
解析:

  分析:(1)将原点坐标代入抛物线中即可求出k的值,也就得出了抛物线的解析式.

  (2)根据(1)得出的抛物线的解析式可得出A点的坐标,也就求出了OA的长,根据△OAB的面积可求出B点纵坐标的绝对值,然后将符合题意的B点纵坐标代入抛物线的解析式中即可求出B点的坐标,然后根据B点在抛物线对称轴的右边来判断得出的B点是否符合要求即可.

  (3)根据B点坐标可求出直线OB的解析式,由于OB⊥OP,由此可求出P点的坐标特点,代入二次函数解析式可得出P点的坐标.求△POB的面积时,可先求出OB,OP的长度即可求出△BOP的面积.

  解答:解:①∵函数的图象与x轴相交于O,

  ∴0=k+1,

  ∴k=-1,

  ∴y=x2-3x,

  ②假设存在点B,过点B做BD⊥x轴于点D,

  ∵△AOB的面积等于6,

  ∴AO·BD=6,

  当0=x2-3x,

  x(x-3)=0,

  解得:x=0或3,

  ∴AO=3,

  ∴BD=4

  即4=x2-3x,

  解得:x=4或x=-1(舍去).

  又∵顶点坐标为:(1.5,-2.25).

  ∵2.25<4,

  ∴x轴下方不存在B点,

  ∴点B的坐标为:(4,4);

  ③∵点B的坐标为:(4,4),

  ∴∠BOD=45°,BO==4

  当∠POB=90°,

  ∴∠POD=45°,

  设P点横坐标为:-x,则纵坐标为:x2-3x,

  即-x=x2-3x,

  解得x=2或x=0,

  ∴在抛物线上仅存在一点P(2,-2).

  ∴OP==2

  使∠POB=90°,

  ∴△POB的面积为:PO·BO=×4×2=8.

  点评:本题考查了二次函数解析式的确定、函数图象交点、图象面积求法等知识.利用已知进行分类讨论得出符合要求点的坐标是解题关键.


提示:

考点:二次函数综合题.


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在直角坐标系中,⊙M与y轴相切于点C,与x轴交于A(x1,0),B(x2,0)两点,其中x1,x2是方程x2-10x+16=0的两个根,且x1<x2,连接MC,过A、B、C三点的抛物线的顶点为N.
(1)求过A、B、C三点的抛物线的解析式;
(2)判断直线NA与⊙M的位置关系,并说明理由;
(3)一动点P从点C出发,以每秒1个单位长的速度沿CM向点M运动,同时,一动点Q从点B出发,沿射线BA以每秒4个单位长度的速度运动,当P运动到M点时,两动点同时停止运动,当时间t为何值时,以Q、O、C为顶点的三角形与△PCO相似?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图:在直角坐标系中放入一边长OC为6的矩形纸片ABCO,将纸翻折后,使点B恰好落在x轴上,记为B',折痕为CE,已知tan∠OB′C=
3
4

(1)求出B′点的坐标;
(2)求折痕CE所在直线的解析式;
(3)作B′G∥AB交CE于G,已知抛物线y=
1
8
x2-
14
3
通过G点,以O为圆心OG的长为精英家教网半径的圆与抛物线是否还有除G点以外的交点?若有,请找出这个交点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

已如:如图,在直角坐标系中,以y轴上的点C为圆心,2为半径的圆与x轴相切于原点O,AB为⊙C的直径,PA切⊙O于点A,交x轴的负半轴于点P,连接PC交OA于点D.
(1)求证:PC⊥OA;
(2)若点P在x轴的负半轴上运动,原题的其他条件不变,设点P的坐标为(x,0),四边形
POCA的面积为S,求S与点P的横坐标x之间的函数关系式;
(3)在(2)的情况下,分析并判断是否存在这样的一点P,使S四边形POCA=S△AOB,若存在,直接写出点P的坐标(不写过程);若不存在,简要说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图:在直角坐标系中描出A(-4,-4),B(1,-4),C(2,-1),D(-3,-1)四个点.
(1)顺次连接A,B,C,D四个点组成的图形是什么图形?
(2)画出(1)中图形分别向上5个单位向右3个单位后的图形.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角坐标系中,A的坐标为(a,0),D的坐标为(0,b),且a、b满足
a+2
+(b-4)2=0

(1)求A、D两点的坐标;
(2)以A为直角顶点作等腰直角三角形△ADB,直接写出B的坐标;
(3)在(2)的条件下,当点B在第四象限时,将△ADB沿直线BD翻折得到△A′DB,点P为线段BD上一动点(不与B、D重合),PM⊥PA交A′B于M,且PM=PA,MN⊥PB于N,请探究:PD、PN、BN之间的数量关系.

查看答案和解析>>

同步练习册答案