精英家教网 > 初中数学 > 题目详情
如图,在平面直角坐标系xOy中,直线AB与x轴交与点A(-2,0),与反比例函数在第一象限内的图象交于点B(2,n),连接BO,直线AB与y轴的交点为C,若△AOB的面积是4,则△OCB的面积是
2
2
分析:先根据三角形面积公式由△AOB的面积是4求出n=4,则B点坐标为(2,4),再利用待定系数法求出直线AB的进行为y=x+2,所以C点坐标为(0,2),然后根据三角形面积公式求△OCB的面积.
解答:解:∵△AOB的面积是4,
1
2
×2×n=4,解得n=4,
∴B点坐标为(2,4),
设直线AB的进行为y=kx+b,
把A(-2,0)、B(2,4)代入得
-2k+b=0
2k+b=4
,解得
k=1
b=2

∴直线AB的进行为y=x+2,
∴C点坐标为(0,2),
∴△OCB的面积=
1
2
×2×2=2.
故答案为2.
点评:本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了待定系数法求函数解析式.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的一个动点,但是点P不与点0、点A重合.连接CP,D点是线段AB上一点,连接PD.
(1)求点B的坐标;
(2)当∠CPD=∠OAB,且
BD
AB
=
5
8
,求这时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•渝北区一模)如图,在平面直角坐标xoy中,以坐标原点O为圆心,3为半径画圆,从此圆内(包括边界)的所有整数点(横、纵坐标均为整数)中任意选取一个点,其横、纵坐标之和为0的概率是
5
29
5
29

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,等腰梯形ABCD的下底在x轴上,且B点坐标为(4,0),D点坐标为(0,3),则AC长为
5
5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标xOy中,已知点A(-5,0),P是反比例函数y=
k
x
图象上一点,PA=OA,S△PAO=10,则反比例函数y=
k
x
的解析式为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,动点P从点O出发,在梯形OABC的边上运动,路径为O→A→B→C,到达点C时停止.作直线CP.
(1)求梯形OABC的面积;
(2)当直线CP把梯形OABC的面积分成相等的两部分时,求直线CP的解析式;
(3)当△OCP是等腰三角形时,请写出点P的坐标(不要求过程,只需写出结果).

查看答案和解析>>

同步练习册答案