【题目】计算:
(1)﹣0.5+3+2.6﹣5+1.15;
(2)﹣81÷|﹣2|×÷(﹣16);
(3)(﹣2)3+(﹣1)2÷+()×(﹣18).
科目:初中数学 来源: 题型:
【题目】如图,△ABC三个顶点A(-3,5),B(-3,0),C(2,0),将△ABC绕点B顺时针旋转使A落在y轴上,与此同时顶点C恰好落在的图象上,则k的值为( )
A. -2 B. -3 C. -4 D. -5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,矩形摆放在平面直角坐标系中,点在轴上,点在轴上,,,过点的直线交矩形的边于点,且点不与点、重合,过点作,交轴于点,交轴于点.
(1)若为等腰直角三角形.
①求直线的函数解析式;
②在轴上另有一点的坐标为,请在直线和轴上分别找一点、,使 的周长最小,并求出此时点的坐标和周长的最小值.
(2)如图2,过点作交轴于点,若以、、、为顶点的四边形是平行四边形,求直线的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】周末,小李乘坐汽车从上海出发区苏州探望奶奶,全程88千米;返回时,因为另选了行车路线,全程为74千米。已知小李去时的平均速度是返回的1.1倍,所用时间却比返回时多了5分钟,求小李返回时所乘汽车的平均速度。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小刘对本班同学的业余兴趣爱好进行了一次调查,她根据采集到的数据,绘制了下面的图1和图2.
请你根据图中提供的信息,解答下列问题:
(1)在图1中,将“书画”部分的图形补充完整;
(2)在图2中,求出“球类”部分所对应的圆心角的度数,并分别写出爱好“音乐”、“书画”、“其它”的人数占本班学生数的百分数;
(3)观察图1和图2,你能得出哪些结论(只要写出一条结论).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数的图像过点和点,以线段为边在第一象限内作等腰直角△ABC,使
(1)求一次函数的解析式;
(2)求出点的坐标
(3)点是轴上一动点,当最小时,求点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,∠AOB=120°,射线OP以1°/秒的速度从OA出发,射线OQ以2°/秒的速度从OB出发,两条射线同时开始逆时针转动t秒.
(1)当t=10秒时,求∠POQ的度数.
(2)如图2,在射线OQ、OP转动过程中,射线OE始终在∠BOQ内部,且OF平分∠AOP,若∠EOF=120°,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,,并且满足.一动点从点出发,在线段上以每秒个单位长度的速度向点移动;动点从点出发在线段上以每秒个单位长度的速度向点运动,点分别从点同时出发,当点运动到点时,点随之停止运动.设运动时间为(秒)
(1)求两点的坐标;
(2)当为何值时,四边形是平行四边形?并求出此时两点的坐标.
(3)当为何值时,是以为腰的等腰三角形?并求出此时两点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图 ,在平面直角坐标系中,直线AB∥ x轴,线段AB与 y 轴交于点M ,已知点 A的坐标是(-2,3), BM4,点C 与点 B 关于 x 轴对称.
(1)在图中描出点C ,并直接写出点 B 和点C 的坐标:B ,C ;
(2)联结 AC 、BC ,AC 与 x 轴交于点 D ,试判断△ABC 的形状,并直接写出点 D的坐标;
(3)在坐标平面内, x 轴的下方,是否存在这样的点 P ,使得△ACP 是等腰直角三角形?如果存在,直接写出点P 的坐标;如果不存在,试说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com