分析 分三角形是锐角三角形和钝角三角形两种情况,根据直角三角形的性质和等腰三角形的性质进行解答即可.
解答 解:①如图1,当为锐角三角形时,
∵∠ABD=60°,BD⊥AC,
∴∠A=90°-60°=30°,
∵AB=8,
∴BD=4,
∴三角形的面积为$\frac{1}{2}$×8×4=16;
②如图2,当为钝角三角形时,
∵∠ABD=60°,BD⊥AC,
∴∠BAD=90°-60°=30°,
∵AB=8,
∴BD=4,
∴三角形的面积为$\frac{1}{2}$×8×4=16,
故答案为:16.
点评 本题考查的是直角三角形的性质和等腰三角形的性质,掌握在直角三角形中,30°角所对的直角边等于斜边的一半是解题的关键,注意分情况讨论思想的运用.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com