精英家教网 > 初中数学 > 题目详情

在△ABC中,∠C=90°,AC=2.1 cm,BC=2.8 cm.
(1)求这个三角形的斜边AB的长和斜边上的高CD的长;
(2)求斜边被分成的两部分AD和BD的长.

解:(1)∵△ABC中,∠C=90°,AC=2.1cm,BC=2.8cm,
∴AB2=AC2+BC2=2.12+2.82=12.25,
∴AB=3.5cm.
∵S△ABC=AC•BC=AB•CD,
∴AC•BC=AB•CD,
∴CD===1.68(cm).

(2)在Rt△ACD中,由勾股定理得:
AD2+CD2=AC2
∴AD2=AC2-CD2=2.12-1.682
=(2.1+1.68)(2.1-1.68)
=3.78×0.42
=2×1.89×2×0.21
=22×9×0.21×0.21
∴AD=2×3×0.21=1.26(cm).
∴BD=AB-AD=3.5-1.26=2.24(cm).
分析:(1)根据勾股定理求得该直角三角形的斜边,根据直角三角形的面积,求得斜边上的高等于斜边的乘积÷斜边;
(2)在(1)的基础上根据勾股定理进行求解.
点评:此题考查了勾股定理的熟练运用,注意:直角三角形斜边上的高等于两条直角边的乘积÷斜边.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

23、如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.
(1)CD与EF平行吗?为什么?
(2)如果∠1=∠2,且∠3=115°,求∠ACB的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

在△ABC中,∠C=90°,∠A=30°,以AB、AC为边向△ABC外作等边△ABD和等边△ACE.
精英家教网
(1)如图1.连接BE、CD,BE与CD交于点O,
①证明:DC=BE;
②∠BOC=
 
°. (直接填答案)
(2)如图2,连接DE,交AB于点F.DF与EF相等吗?证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

18、如图,在△ABC中,边AC的垂直平分线交BC于点D,交AC于点E、已知△ABC中与△ABD的周长分别为18cm和12cm,则线段AE的长等于
3
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

在△ABC中,∠C=90°,BC=12,AB=13,则tanA的值是(  )
A、
5
12
B、
12
5
C、
12
13
D、
5
13

查看答案和解析>>

科目:初中数学 来源: 题型:

在△ABC中,a=
2
,b=
6
,c=2
2
,则最大边上的中线长为(  )
A、
2
B、
3
C、2
D、以上都不对

查看答案和解析>>

同步练习册答案