精英家教网 > 初中数学 > 题目详情
在平面直角坐标系xOy中,对于任意两点P1(x1,y1)与P2(x2,y2)的“非常距离”,给出如下定义:
若|x1﹣x2|≥|y1﹣y2|,则点P1与点P2的“非常距离”为|x1﹣x2|;
若|x1﹣x2|<|y1﹣y2|,则点P1与点P2的“非常距离”为|y1﹣y2|.
例如:点P1(1,2),点P2(3,5),因为|1﹣3|<|2﹣5|,所以点P1与点P2的“非常距离”为|2﹣5|=3,也就是图1中线段P1Q与线段P2Q长度的较大值(点Q为垂直于y轴的直线P1Q与垂直于x轴的直线P2Q交点).
(1)已知点A(﹣,0),B为y轴上的一个动点,
①若点A与点B的“非常距离”为2,写出一个满足条件的点B的坐标;
②直接写出点A与点B的“非常距离”的最小值;
(2)已知C是直线y=x+3上的一个动点,
①如图2,点D的坐标是(0,1),求点C与点D的“非常距离”的最小值及相应的点C的坐标;
②如图3,E是以原点O为圆心,1为半径的圆上的一个动点,求点C与点E的“非常距离”的最小值及相应的点E与点C的坐标.
(1)①(0,2)或(0,﹣2)  ②
(2)①   C(﹣)   ②E(﹣),C(﹣),1
解:(1)①∵B为y轴上的一个动点,
∴设点B的坐标为(0,y).
∵|﹣﹣0|=≠2,
∴|0﹣y|=2,
解得,y=2或y=﹣2;
∴点B的坐标是(0,2)或(0,﹣2);
②点A与点B的“非常距离”的最小值为
(2)①如图2,

取点C与点D的“非常距离”的最小值时,需要根据运算定义“若|x1﹣x2|≥|y1﹣y2|,则点P1与点P2的“非常距离”为|x1﹣x2|”解答,此时|x1﹣x2|=|y1﹣y2|.即AC=AD,
∵C是直线y=x+3上的一个动点,点D的坐标是(0,1),
∴设点C的坐标为(x0x0+3),
∴﹣x0=x0+2,
此时,x0=﹣
∴点C与点D的“非常距离”的最小值为:|x0|=
此时C(﹣);
②如图3

当点E在过原点且与直线y=x+3垂直的直线上时,点C与点E的“非常距离”最小,设E(x,y)(点E位于第二象限).则

解得,
故E(﹣).
﹣x0=x0+3﹣
解得,x0=﹣
则点C的坐标为(﹣),
最小值为1.
(1)①根据点B位于y轴上,可以设点B的坐标为(0,y).由“非常距离”的定义可以确定|0﹣y|=2,据此可以求得y的值;
②设点B的坐标为(0,y),因为|﹣﹣0|≥|0﹣y|,所以点A与点B的“非常距离”最小值为|﹣﹣0|=
(2)①设点C的坐标为(x0x0+3),根据材料“若|x1﹣x2|≥|y1﹣y2|,则点P1与点P2的“非常距离”为|x1﹣x2|”可知,C、D两点的“非常距离”的最小值为﹣x0=x0+2,据此可以求得点C的坐标;
②当点E在过原点且与直线y=x+3垂直的直线上时,点C与点E的“非常距离”最小,即E(﹣).解答思路同上.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知一次函数y=x+b的图象与x轴,y轴交于点A、B.
(1)若将此函数图象沿x轴向右平移2个单位后经过原点,则b=     
(2)若函数y1=x+b图象与一次函数y2=kx+4的图象关于y轴对称,求k、b的值;
(3)当b>0时,函数y1=x+b图象绕点B逆时针旋转n°(0°<n°<180°)后,对应的函数关系式为y=-x+b,求n的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某移动通讯公司开设了两种通讯业务:“全球通”使用者先缴50元月租费,然后每通话1分钟,再付话费0.4元;“神舟行”不缴月租费,每通话1min付费0.6元.若一个月内通话x min,两种方式的费用分别为y1元和y2元.
(1)写出y1、y2与x之间的函数关系式;
(2)一个月内通话多少分钟,两种移动通讯费用相同;
(3)你能为用户设计一个方案,使用户合理地选择通信业务吗?
(4)某人估计一个月内通话300min,应选择哪种移动通讯合算些.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,在平面直角坐标系xOy中,直线与x轴、y轴分别交于点A、B,点C在线段AB上,且
(1)求点C的坐标(用含有m的代数式表示);
(2)将△AOC沿x轴翻折,当点C的对应点C′恰好落在抛物线上时,求该抛物线的表达式;
(3)设点M为(2)中所求抛物线上一点,当以A、O、C、M为顶点的四边形为平行四边形时,请直接写出所有满足条件的点M的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

正方形,,,…按如图所示的方式放置,点和点分别在直线轴上,已知点,则的坐标是     .

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,A(1,0),B(4,0),M(5,3).动点P从点A出发,沿x轴以每秒1个单位长的速度向右移动,且过点P的直线l:y=-x+b也随之移动.设移动时间为t秒.

(1)当t=1时,求l的解析式;
(2)若l与线段BM有公共点,确定t的取值范围;
(3)直接写出t为何值时,点M关于l的对称点落在y轴上.如不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,梯形ABCD中,AB∥CD,AB=14,AD= 4,CD=7.直线l经过A,D两点,且sin∠DAB=.动点P在线段AB上从点A出发以每秒2个单位的速度向点B运动,同时动点Q从点B出发以每秒5个单位的速度沿B→C→D的方向向点D运动,过点P作PM垂直于AB,与折线A→D→C相交于点M,当P,Q两点中有一点到达终点时,另一点也随之停止运动.设点P,Q运动的时间为t秒(t>0),△MPQ的面积为S.

(1)求腰BC的长;
(2)当Q在BC上运动时,求S与t的函数关系式;
(3)在(2)的条件下,是否存在某一时刻t,使得△MPQ的面积S是梯形ABCD面积的?若存在,请求出t的值;若不存在,请说明理由;
(4)随着P,Q两点的运动,当点M在线段DC上运动时,设PM的延长线与直线l相交于点N,试探究:当t为何值时,△QMN为等腰三角形?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图象如图所示,则关于x的不等式k1x+b>k2x的解为(  )
A.x>-1B.x<-1
C.x<-2D.无法确定

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知直线与坐标轴相交于A、B两点,与双曲线交于点C.A、D两点关于y轴对称若四边形OBCD的面积为6,求k的值.

查看答案和解析>>

同步练习册答案