分析 (1)如图1中,作PE⊥BC于E,PF⊥AB于F.只要证明△PEN≌△PFM即可解决问题;
(2)由△PNQ∽△PBN,推出$\frac{PN}{PB}$=$\frac{PQ}{PN}$,可得PN2=PQ•PB=15,由此即可解决问题;
解答 (1)证明:如图1中,作PE⊥BC于E,PF⊥AB于F.
∵四边形ABCD是正方形,
∴∠PBC=∠PBA=45°,∠ABC=90°,
∵PE⊥BC,PF⊥AB,
∴PE=PF,
∵∠FBE=∠PFB=∠PEB=90°,
∴四边形PEBF是矩形,
∴∠EPF=∠MPN=90°,
∴∠MPF=∠NPE,∵∠PEN=∠PFM=90°,
∴△PEN≌△PFM,
∴PM=PN.
(2)解:如图2中,
由(1)可知△PMN是等腰直角三角形,
∴∠PNQ=∠PBN,∵∠NPQ=∠BPN,
∴△PNQ∽△PBN,
∴$\frac{PN}{PB}$=$\frac{PQ}{PN}$,
∴PN2=PQ•PB=15,
∴PN=$\sqrt{15}$.
点评 本题考查正方形的性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\frac{1}{4}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com