精英家教网 > 初中数学 > 题目详情
如图,反比例函数y=的图象与一次函数y=mx+b的图象相交于两点A(1,3),B(n,-1).
(1)分别求出反比例函数与一次函数的函数关系式;
(2)若直线AB与y轴交于点C,求△BOC的面积.

【答案】分析:(1)根据待定系数法就可以求出函数的解析式;
(2)求△BOC的面积就是求B,C两点的坐标.
解答:解:(1)∵点A(1,3)在反比例函数图象上
∴k=3
即反比例函数关系式为y=
∵点B(n,-1)在反比例函数图象上
∴n=-3
∵点A(1,3)和B(-3,-1)在一次函数y=mx+b的图象上

解得
∴一次函数关系式为y=x+2

(2)当x=0时,一次函数值为2
∴OC=2
∴S△BOC=×2×|-3|=3.
点评:用待定系数法确定函数的解析式,是常用的一种解题方法.同学们要熟练掌握这种方法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,反比例函数y=
kx
与一次函数y=ax的图象交于两点A、B,若A点坐标为(2,1),则B点坐标为
(-2,-1)
(-2,-1)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,反比例函数y=
2x
的图象与一次函数y=kx+b的图象交于点A(m,2),点B(-2,n ),一次函数图象与y轴的交点为C.
(1)求一次函数解析式;
(2)求△AOC的面积;
(3)观察函数图象,写出当x取何值时,一次函数的值比反比例函数的值小?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,反比例函数y=
k
x
(x>0)的图象与一次函数y=ax+b的图象交于点A(1,6)和点B(3,2).当ax+b<
k
x
时,则x的取值范围是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,反比例函数y=
2
x
在第一象限的图象上有一点P,PC⊥x轴于点C,交反比例函数y=
1
x
图象于点A,PD⊥y轴于点D,交y=
1
x
图象于点B,则四边形PAOB的面积为
1
1

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,反比例函数y=
kx
的图象经过A、B两点,点A、B的横坐标分别为2、4,过A作AC⊥x轴,垂足为C,且△AOC的面积等于4.
(1)求k的值;
(2)求直线AB的函数值小于反比例函数的值的x的取值范围;
(3)求△AOB的面积;
(4)在x轴的正半轴上是否存在一点P,使得△POA为等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案