精英家教网 > 初中数学 > 题目详情
14.老师出了如下的题:如图,要求在图中按下面的语言继续画图:(画图工具和方法不限)过A点画AD⊥BC于D,过D点画DE∥AB交AC于E,在线段AB上任取一点F,以F为顶点,FB为一边,画∠BFG=∠ADE,∠BFG的另一边FG与线段BC交于点G.请你按照上面画图时给出的条件说明FG⊥BC.

分析 先根据题目要求作出图形,根据平行线的性质可得∠1=∠2,等量代换得到∠2=∠3,根据平行线的判定得到AD∥FG,再根据平行线的性质即可求解.

解答 解:如图所示:

∵DE∥AB,
∴∠1=∠3.
又∵∠1=∠2,
∴∠2=∠3,
∴AD∥FG.
∵AD⊥BC于D,
∴∠CDA=90°.
∵AD∥FG,
∴∠FGD=∠CDA=90°,
∴FG⊥BC.

点评 本题主要考查图-复杂作图,平行线的判定和性质,可围绕截线找同位角、内错角和同旁内角,根据图形找到两个相等的同位角或内错角,或者同旁内角互补都可判定两条直线平行;在同一平面内,若一条直线垂直于另一条直线,那么平行于这条直线的所有直线都垂直于那条直线.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

4.如果$\sqrt{a-6}+{(b-3)^2}=0$,则$\sqrt{a+b}$的值为3.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.在平面直角坐标系内,点P(m-3,m-5)在第三象限,则m的取值范围是(  )
A.-5<m<3B.-3<m<5C.m<3D.m<5

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,点E、F是正方形ABCD中CD、AD边上的点,CE=DF,试判断BE与CF有怎样的关系?试说明为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,在正方形ABCD中,点M、N是CD边上的两点,且DM=CN,过D作DG⊥AM于H,且分别交AC、BC于点E、G,AM、EN的延长线交于点P.
(1)求证:DM=CG;
(2)判断△PMN的形状,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.四边形ABCD内部存在一点P,使得ABPD为平行四边形.求证:若∠CBP=∠CDP,则∠ACD=∠BCP,反之亦然.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图1,某小区有一块空闲的梯形空地OABC,其中∠AOC=90°,OA=180m,OC=100m,BC=80m,为了改善居民的生活环境,同时满足居民停车的需要,物业公司决定对其进行改造,如图2建立直角坐标系.
(1)求线段AB所在直线的函数解析式;
(2)物业公司的改造方案如下:在AB边上取一点P,过点P作PD⊥OA,PE⊥OC于E.划分出矩形ODPE部分修建花园,其余部分改造成停车场,居民要求花园的面积不得低于空地面积的60%,试通过计算说明,物业公司的改造方案是否可行;
(3)考虑到小区内行人的安全,有居民建立重新规划,将梯形空地划分的面积比为6:4的两部分,分别用于修建花园和停车场,物业公司决定采纳居民的建议,请你帮助物业公司设计一个改造方案,画出简图,并简要说明你的改造方案.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.二次函数y=ax2+bx+c图象如图所示,下列正确的个数为(  )
①bc>0
②2a-3c<0
③2a+b>0
④ax2+bx+c=0有两个解x1,x2,x1>0,x2<0
⑤a+b+c>0
⑥当x>1时,y随x增大而增大.
A.3B.4C.5D.6

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.图①是一个长为2a,宽为2b的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图②的形状拼成一个正方形.
(1)请用两种不同的方法求图2中阴影部分的面积:
方法1:(a+b)2-4ab;
方法2:(a-b)2
(2)根据(1)的结果,请你写出(a+b)2、(a-b)2、ab之间的等量关系是(a+b)2-4ab=(a-b)2
(3)根据(2)题中的等量关系,解决如下问题:a+b=$\sqrt{7}$,a-b=$\sqrt{2}$,求ab的值.

查看答案和解析>>

同步练习册答案