解:(1)AB=AC,∠BAC=36°,∠DAE=108°.
∴∠ABC=∠ACB=
=72°,∠DAB+∠CAE=72°.
∴∠D+∠DAB=72°,∠CAE+∠E=72°.
∴∠D=∠CAE,∠DAB=∠E.
∴△DAB∽△AEC.
∴
.
∴
.
∴
(2)完成表格,描点绘图
(3)根据题意,得
,
∴ab=4,a-b=3.
∴
;
(4)作∠ABC的平分线BF交AC于点F.
∵∠ABC=∠ACB=72°,
∴∠ABF=∠FBC=36°.
∴∠BFC=72°.
∴AF=BF=BC.
在△CBF和△CAB中,
∵∠BCF=∠ACB,∠CBF=∠CBA,
∴△CBF∽△CAB.
∴
.
∴BC
2=AC•CF.
∴AF
2=AC•CF.
∴
.
∴
.
分析:(1)根据题意可知∠D=∠CAE,∠DAB=∠E,推出△DAB∽△AEC,即可求出y与x的之间的函数表达式;
(2)首先画出表格,在描点,连线即可;
(3)把交点坐标代入两个解析式,即可得出关于a和b方程组,求解即可;
(4)作∠ABC的平分线BF交AC于点F,结合题意,可推出AF=BF=BC,△CBF∽△CAB,即得BC
2=AC•CF.推出AF
2=AC•CF,求出AF后即可得BC的长度.
点评:本题主要考查相似三角形的判定和性质、反比例函数的图象、反比例函数与一次函数交点的问题,解题的关键在于求出三角形相似和有关的函数图象.