精英家教网 > 初中数学 > 题目详情
已知.如图,BC为半圆O的直径,F是半圆上异于B、C的一点,A是
BF
的中点,AD⊥BC于点D,BF交精英家教网AD于点E.
(1)求证:BE•BF=BD•BC;
(2)试比较线段BD与AE的大小,并说明道理.
分析:(1)连接FC,根据有两组角相等的两个三角形相似得到△BDE∽△BFC,根据相似三角形的对应边成比例即可得到结论.
(2)连接AC,AB,根据圆周角定理及余角的性质可得到BE=AE,由已知可知BE>BD,从而就得到AE>BD.
解答:精英家教网(1)证明:连接FC,∵BC为半圆O的直径
则BF⊥FC
∵∠BFC=∠BDE=90°,∠FBC=∠EBD
∴△BDE∽△BFC
∴BE:BC=BD:BF
∴BE•BF=BD•BC

(2)解:AE>BD.理由如下:
连接AC,AB,则∠BAC=90°
∵A是
BF
的中点
∴∠ABF=∠ACB
∵∠ACB+∠ABC=90°,∠BAD+∠ABC=90°
∴∠ACB=∠BAD
∴∠BAD=∠ABF
∴BE=AE
∵BE>BD
∴AE>BD
点评:此题主要考查学生对相似三角形的判定及圆周角定理等知识点的综合运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知:如图,抛物线y=
12
x2-3x+c
交x轴正半轴于A、B两点,交y轴于C点,过A、精英家教网B、C三点作⊙D.若⊙D与y轴相切.
(1)求c的值;
(2)连接AC、BC,设∠ACB=α,求tanα;
(3)设抛物线顶点为P,判断直线PA与⊙D的位置关系,并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在直角坐标系xoy中,以x轴的负半轴上一点H为圆心作⊙H与x轴交于A、B两点,与y轴交于C、D两点.以C为圆心、OC为半径作⊙C与⊙H交于F、F两点,与y轴交于O、Q两点.直线EF与AC、BC、y轴分别于M、N、G三点.直线y=
34
x+3
经过A、C两点.
(1)求tan∠CNM的值;
(2)连接OM、ON,问:四边形CMON是怎样的四边形?请说明理由.
(3)如图,R是⊙C中弧EQ上的一动点(不与E点重合),过R作⊙C的切线RT,若RT与⊙H相交于S、T不同两点.问:CS•CT的值是否发生变化?若不变,请说明理由,并求其值;若变化,请求其值的变化范围.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•闵行区二模)已知:如图,抛物线y=-x2+bx+c与x轴的负半轴相交于点A,与y轴相交于点B(0,3),且∠OAB的余切值为
13

(1)求该抛物线的表达式,并写出顶点D的坐标;
(2)设该抛物线的对称轴为直线l,点B关于直线l的对称点为C,BC与直线l相交于点E.点P在直线l上,如果点D是△PBC的重心,求点P的坐标;
(3)在(2)的条件下,将(1)所求得的抛物线沿y轴向上或向下平移后顶点为点P,写出平移后抛物线的表达式.点M在平移后的抛物线上,且△MPD的面积等于△BPD的面积的2倍,求点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•鄂州)已知,如图,△OBC中是直角三角形,OB与x轴正半轴重合,∠OBC=90°,且OB=1,BC=
3
,将△OBC绕原点O逆时针旋转60°再将其各边扩大为原来的m倍,使OB1=OC,得到△OB1C1,将△OB1C1绕原点O逆时针旋转60°再将其各边扩大为原来的m倍,使OB2=OC1,得到△OB2C2,…,如此继续下去,得到△OB2012C2012,则m=
2
2
.点C2012的坐标是
(-22013,0)
(-22013,0)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•封开县一模)已知,如图,在平面直角坐标系中,Rt△ABC的斜边BC在x轴上,直角顶点A在y轴的正半轴上,A(0,2),B(-1,0).
(1)求点C的坐标;
(2)求过A、B、C三点的抛物线的解析式和对称轴;
(3)设点P(m,n)是抛物线在第一象限部分上的点,△PAC的面积为S,求S关于m的函数关系式,并求使S最大时点P的坐标.

查看答案和解析>>

同步练习册答案