精英家教网 > 初中数学 > 题目详情
已知抛物线y=x2+bx-a2
(1)请你选定a、b适当的值,然后写出这条抛物线与坐标轴的三个交点,并画出过三个交点的圆;
(2)试讨论此抛物线与坐标轴交点分别是1个,2个,3个时,a、b的取值范围,并且求出交点坐标.
(1)∵这条抛物线与坐标轴的三个交点,
∴这条抛物线与x轴的两个交点,
∴△=b2+4a2>0且a2≠0,
∴设b=2,a=
6

∴y=x2+2x-6,
∴这条抛物线与坐标轴的三个交点为(2,0),(-4,0),(0,-6).
如图:

(2)①当这条抛物线与坐标轴的有一个交点,
∴这条抛物线与坐标轴的交点是原点(0,0),
则a=0,b=0.
②当这条抛物线与坐标轴的有两个交点时,
抛物线过原点,则此时a=0,b≠0,
∴y=x2+bx,
交点坐标为(0,0),(-b,0).
③当这条抛物线与坐标轴的有三个交点时,
这条抛物线与x轴交于两点,且不过原点,
∴△=b2+4a2>0,
∴a≠0,b为任意实数,
交点坐标为(
-b±
4a2+b2
2
,0),(0,-a2).
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知:抛物线y=ax2+bx+4的对称轴为x=-1,且与x轴相交于点A、B,与y轴相交于点C,其中点A的坐标为(-3,0),
(1)求该抛物线的解析式;
(2)若该抛物线的顶点为D,求△ACD的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,三角形ABC是以BC为底边的等腰三角形,点A、C分别是一次函数y=-
3
4
x+3的图象与y轴、x轴的交点,点B在二次函数y=
1
8
x2+bx+c
的图象上,且该二次函数图象上存在一点D使四边形ABCD能构成平行四边形.
(1)试求b,c的值,并写出该二次函数表达式;
(2)动点P从A到D,同时动点Q从C到A都以每秒1个单位的速度运动,问:
①当P运动到何处时,有PQ⊥AC?
②当P运动到何处时,四边形PDCQ的面积最小?此时四边形PDCQ的面积是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图在平面直角坐标系中,将一块等腰直角三角板ABC放在第二象限,且斜靠在两坐标轴上,且点A(0,2),点C(-1,0),如图所示点B在抛物线y=ax2+ax-2上.
(1)求点B的坐标;
(2)求抛物线的解析式;
(3)将三角板ABC绕顶点A逆时针方向旋转90°到达△AB′C′的位置,请写出点B′坐标______,点C′坐标______;判断点B′______,C′______(填“在”或“不”)在(2)中的抛物线上.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=(1-m)x2+4x-3开口向下,与x轴交于A(x1,0)和B(x2,0)两点,其中x1<x2
(1)求m的取值范围;
(2)若x12+x22=10,求抛物线的解析式,并在给出的直角坐标系中画出这条抛物线;
(3)设这条抛物线的顶点为C,延长CA交y轴于点D.在y轴上是否存在点P,使以P、B、O为顶点的三角形与△BCD相似?若存在,求出P点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线y=ax2+bx+c(a≠0)与x轴相交于点A(-2,0)和点B,与y轴相交于点C,顶点D(1,-
9
2

(1)求抛物线对应的函数关系式;
(2)求四边形ACDB的面积;
(3)若平移(1)中的抛物线,使平移后的抛物线与坐标轴仅有两个交点,请直接写出一个平移后的抛物线的关系式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

一座隧道的截面由抛物线和长方形构成,长方形的长为8m,宽为2m,隧道最高点P位于AB的中央且距地面6m,建立如图所示的坐标系.
(1)求抛物线的表达式;
(2)一辆货车高4m,宽2m,能否从该隧道内通过,为什么?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=x2-2x-3与x轴交于A、B两点,与y轴交于点C.
(1)点A的坐标为______,点B的坐标为______,点C的坐标为______.
(2)设抛物线y=x2-2x-3的顶点为M,求四边形ABMC的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1所示,一张三角形纸片ABC,∠ACB=90°,AC=8,BC=6.沿斜边AB的中线CD把这张纸片剪成△AC1D1和△BC2D2两个三角形(如图所示).将纸片△AC1D1沿直线D2B(AB)方向平移(点A,D1,D2,B始终在同一直线上),当点D1于点B重合时,停止平移.在平移过程中,C1D1与BC2交于点E,AC1与C2D2、BC2分别交于点F、P.
(1)当△AC1D1平移到如图3所示的位置时,猜想图中的D1E与D2F的数量关系,并证明你的猜想;
(2)设平移距离D2D1为x,△AC1D1与△BC2D2重叠部分面积为y,请写出y与x的函数关系式,以及自变量的取值范围;
(3)对于(2)中的结论是否存在这样的x的值使得y=
1
4
S△ABC;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案