【题目】如图,点A(-2,0), 点B(0,6),C为OB的中点,将绕点B逆时针旋转90°后得到△A′BC′.若反比例函数的图象恰好经过A’B的中点D,则k的值为( )
A.12B.15C.D.
【答案】B
【解析】
作A′H⊥y轴于H.证明△AOB≌△BHA′(AAS),推出OA=BH,OB=A′H,求出点A′坐标,再利用中点坐标公式求出点D坐标即可解决问题.
解:作A′H⊥y轴于H.
∵∠AOB=∠A′HB=∠ABA′=90°,
∴∠ABO+∠A′BH=90°,∠ABO+∠BAO=90°,
∴∠BAO=∠A′BH,
∵BA=BA′,
∴△AOB≌△BHA′(AAS),
∴OA=BH,OB=A′H,
∵点A的坐标是(-2,0),点B的坐标是(0,6),
∴OA=2,OB=6,
∴BH=OA=2,A′H=OB=6,
∴OH=4,
∴A′(6,4),
∵BD=A′D,
∴D(3,5),
∵反比例函数的图象经过点D,
∴k=15.
故选:B.
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠A=90°,AB=6,AC=8,D,E分别是边AB,AC的中点,点P从点D出发沿DE方向运动,过点P作PQ⊥BC于Q,过点Q作QR∥BA交AC于R,当点Q与点C重合时,点P停止运动.设BQ=x,QR=y.
(1)求点D到BC的距离DH的长;
(2)求y关于x的函数关系式(不要求写出自变量的取值范围);
(3)是否存在点P,使△PQR为等腰三角形?若存在,请求出所有满足要求的x的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的一元二次方程x2﹣(m+2)x+2m=0.
(1)求证:不论m为何值,该方程总有两个实数根;
(2)若直角△ABC的两直角边AB、AC的长是该方程的两个实数根,斜边BC的长为3,求m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校兴趣小组以问卷调查的形式,随机调查了某地居民对武汉封城后续措施的了解情况,设置了多选题,并将调查结果绘制成如图不完整的统计图.
选项 | A | B | C | D | E |
后续措施 | 扩大宣传力度 | 分类隔离病人 | 封闭小区 | 聘请专业物资 | 采取其他措施 |
选择人次 | 25 | 85 | 15 | 35 |
已知平均每人恰好选择了两个选项,根据以上信息回答下列问题:
(1)求参与本次问卷调查的居民人数,并补全条形统计图;
(2)在扇形统计图中,求E选项对应圆心角α的度数;
(3)根据此次调查结果估计该地100万居民当中选择D选项的人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在每个小正方形的边长为1的网格中,的顶点A,B,O均落在格点上,为⊙O的半径.
(1)的大小等于_________(度);
(2)将绕点O顺时针旋转,得,点A,B旋转后的对应点为,.连接,设线段的中点为M,连接.当取得最大值时,请在如图所示的网格中,用无刻度的直尺画出点,并简要说明点的位置是如何找到的(不要求证明).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BC相交于点N.连接BM,DN.
(1)求证:四边形BMDN是菱形;
(2)若AB=4,AD=8,求MD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】数学小组想利用所学的知识了解某广告牌的高度(图中的长),经测量知,在B处测得点D的仰角为,在A处测得点C的仰角为,,且A、B、H三点在一条直线上,请根据以上数据计算GH的长(,要求结果精确得到0.1)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点的坐标为,点在轴正半轴上,且,以为边在第一象限内作正方形,且双曲线经过点.
(1)求的值;
(2)将正方形沿轴负方向平移得到正方形,当点恰好落在双曲线上时,求的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC内接于⊙O,AB为⊙O的直径,AB=10,AC=6,连结OC,弦AD分别交OC,BC于点E,F,其中点E是AD的中点.
(1)求证:∠CAD=∠CBA.
(2)求OE的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com