精英家教网 > 初中数学 > 题目详情
已知:如图,抛物线y=-
3
3
x2-
2
3
3
x+
3
的图象与x轴分别交于A,B两点,与y轴交精英家教网于C点,⊙M经过原点O及点A、C,点D是劣弧
OA
上一动点(D点与A、O不重合).
(1)求抛物线的顶点E的坐标;
(2)求⊙M的面积;
(3)连CD交AO于点F,延长CD至G,使FG=2,试探究,当点D运动到何处时,直线GA与⊙M相切,并请说明理由.
分析:(1)已知了抛物线的解析式,用配方法和公式法求都可以.
(2)由于∠AOC是直角,那么连接AC,则AC必过圆心M,也就是说AC就是圆M的直径,因此求出AC就可以得出圆M的半径长,根据抛物线的解析式可求出A,C两点的坐标,也就知道了OA,OC的长,可在直角三角形AOC中,用勾股定理求出AC,然后可根据圆的面积的计算公式求出圆M的面积.
(3)应是D到OA中点时,GA与圆M相切,要证垂直就必须证AC⊥AG,此时D是弧OA的中点,根据OC,OA的长,不难得出∠ACO=60°,那么∠FCO=∠ACD=30°,有OC=
3
,那么可求得OF=1,AF=OA-OF=2,首先三角形AFG是个等腰三角形,而∠CFO=90-30=60°,因此∠AFG=60°,三角形AFG就是个等边三角形,∠FAG=60°,因此∠CAG=60+30=90°,即可得出GA与圆M相切.
解答:精英家教网解:(1)抛物线y=-
3
3
x2-
2
3
3
x+
3

=-
3
3
(x2+2x+1)+
3
+
3
3

=-
3
3
(x+1)2+
4
3
3

∴E的坐标为(-1,
4
3
3
);

(2)连AC;
∵⊙M过A,O,C,∠AOC=90°,
∴AC为⊙O的直径.
而|OA|=3,OC=
3

∴r=
AC
2
=
3

∴S⊙M=πr2=3π;

(3)当点D运动到
OA
的中点时,直线GA与⊙M相切.
理由:在Rt△ACO中,|OA|=3,OC=
3

∵tan∠ACO=
3
3
=
3

∴∠ACO=60°,∠CAO=30°.
∵点D是
OA
的中点,
AD
=
DO

∴∠ACG=∠DCO=30°.
∴OF=OC•tan30°=1,∠CFO=60°.
在△GAF中,AF=2,FG=2,∠AFG=∠CFO=60°,
∴△AGF为等边三角形.
∴∠GAF=60°.
∴∠CAG=∠GAF+∠CAO=90°.
又AC为直径,
∴当D为
OA
的中点时,GA为⊙M的切线.
点评:本题将抛物线与圆放在同一坐标系中研究,因此数形结合的解题思想是不可缺少的,解第3小问时可以先自己作图来确定D点的位置.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知:如图,抛物线y=ax2+bx+c与x轴交于A、B两点,它们的横坐标分别为-1和3,精英家教网与y轴交点C的纵坐标为3,△ABC的外接圆的圆心为点M.
(1)求这条抛物线的解析式;
(2)求图象经过M、A两点的一次函数解析式;
(3)在(1)中的抛物线上是否存在点P,使过P、M两点的直线与△ABC的两边AB、BC的交点E、F和点B所组成的△BEF和△ABC相似?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,抛物线的顶点为点D,与y轴相交于点A,直线y=ax+3与y轴也交于点A,矩形ABCO的顶点B在精英家教网此抛物线上,矩形面积为12,
(1)求该抛物线的对称轴;
(2)⊙P是经过A、B两点的一个动圆,当⊙P与y轴相交,且在y轴上两交点的距离为4时,求圆心P的坐标;
(3)若线段DO与AB交于点E,以点D、A、E为顶点的三角形是否有可能与以点D、O、A为顶点的三角形相似,如果有可能,请求出点D坐标及抛物线解析式;如果不可能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•宁化县质检)已知:如图,抛物线y=ax2+bx+c与x轴交于点A(1-
3
,0)和点B,将抛物线沿x轴向上翻折,顶点P落在点P′(1,3)处.
(1)求原抛物线的解析式;
(2)在原抛物线上,是否存在一点,与它关于原点对称的点也在该抛物线上?若存在,求满足条件的点的坐标;若不存在,说明理由.
(3)学校举行班徽设计比赛,九年级(5)班的小明在解答此题时顿生灵感:过点P′作x轴的平行线交抛物线于C、D两点,将翻折后得到的新图象在直线CD以上的部分去掉,设计成一个“W”型的班徽,“5”的拼音开头字母为W,“W”图案似大鹏展翅,寓意深远;而且小明通过计算惊奇的发现这个“W”图案的高与宽(CD)的比非常接近黄金分割比
5
-1
2
(约等于0.618).请你计算这个“W”图案的高与宽的比到底是多少?(参考数据:
5
≈2.236
6
≈2.449
,结果精确到0.001)

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,如图,抛物线y=ax2-2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A,B,点A的坐标为(4,0).
(1)求该抛物线的解析式;
(2)若点M在抛物线上,且△ABC与△ABM的面积相等,直接写出点M的坐标;
(3)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ.当△CQE的面积最大时,求点Q的坐标;
(4)若平行于x轴的动直线l与线段AC交于点F,点D的坐标为(2,0).问:是否存在这样的直线l,使得△ODF是等腰三角形?若存在,请求出直线l的解析式;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,抛物线y=x2+px+q与x轴相交于A、B两点,与y轴交于点C,且OA≠OB,OA=OC,设抛物线的顶点为点P,直线PC与x轴的交点D恰好与点A关于y轴对称.
(1)求p、q的值.
(2)在题中的抛物线上是否存在这样的点Q,使得四边形PAQD恰好为平行四边形?若存在,求出点Q的坐标;若不存在,请说明理由.
(3)连接PA、AC.问:在直线PC上,是否存在这样点E(不与点C重合),使得以P、A、E为顶点的三角形与△PAC相似?若存在,求出点E的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案