精英家教网 > 初中数学 > 题目详情
4.若一次函数y=kx-3k+6的图象过原点,则k=2,一次函数的解析式为y=2x.

分析 直接把原点坐标代入解析式得到关于k的方程,然后解方程即可.

解答 解:把(0,0)))代入y=kx-3k+6得-3k+6=0,
解得k=2.
所以一次函数为y=2x;
故答案为2,y=2x.

点评 本题考查了一次函数图象上点的坐标特征:一次函数图象上点的坐标满足其解析式.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

14.顶点在(-$\frac{1}{2}$,$\frac{9}{2}$)的抛物线经过点(-1,4).
(1)求这条抛物线的表达式;
(2)所求的抛物线经过怎样的平移才能使得顶点落在原点?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.(1)求下列算式的值:①$\root{3}{-\frac{1}{8}}$,-$\root{3}{+\frac{1}{8}}$;②$\root{3}{-64}$,-$\root{3}{+64}$;③$\root{3}{-\frac{27}{1000}}$,-$\root{3}{+\frac{27}{1000}}$
(2)通过上述计算,试比较$\root{3}{-a}$与-$\root{3}{a}$的大小关系.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.化简求值:
(1)$\frac{4{a}^{2}-8ab+4{b}^{2}}{2{a}^{2}-2{b}^{2}}$,其中a=2,b=3.
(2)$\frac{{x}^{2}-4y}{4{x}^{2}-8xy}$,其中x=$\frac{1}{2}$,y=$\frac{1}{4}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.若a,b均为正整数,且a>$\sqrt{7}$,b$<\sqrt{2}$,a+b的最小值是(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,已知坐标点A(2,2),B(1,1),C(3,-1.5),D(3,2).请写出A、B两点关于CD对称的点E、F的坐标,并在图中画出这两点.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.如图,Rt△ABC中,∠ACB=90°,D是斜边AB的中点,连接CD,若CD=10cm,则AB的长为20cm.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.将函数y=ax2+bx+c的图象先向右平移2个单位再向上平移3个单位后得解析式为y=2x2-x+3,则a-b+c等于(  )
A.1B.9C.15D.27

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图所示,AC和BD相交于点O,OA=OC,△AOB与△COD全等吗?并说明理由.

查看答案和解析>>

同步练习册答案