分析 由平行四边形的性质得出OA=OC=$\frac{1}{2}$AC=4,OB=OD=$\frac{1}{2}$BD,在△BOC中,由三角形的三边关系定理得出OB的取值范围,得出BD的取值范围即可.
解答 解:如图所示:
∵四边形ABCD是平行四边形,
∴OA=OC=$\frac{1}{2}$AC=4,OB=OD=$\frac{1}{2}$BD,
在△BOC中,BC=6,OC=4,
∴OB的取值范围是BC-OC<OB<BC+OC,
即2<OB<10,
∴BD的取值范围是4<BD<20.
故答案为:4<BD<20.
点评 本题考查了平行四边形的性质、三角形的三边关系定理;熟练掌握平行四边形的性质和三角形的三边关系,并能进行推理计算是解决问题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com