精英家教网 > 初中数学 > 题目详情
如图,已知四边形ABCD中,AB=20,BC=15,CD=7,AD=24,∠B=90°,请问∠D等于90°吗?请说明理由.
分析:连接AC.首先根据勾股定理求得AC的长,再根据勾股定理的逆定理求得∠D=90°即可.
解答:解:∠D=90°,
理由如下:
∵AB=20,BC=15,∠B=90°,
∴由勾股定理,得AC2=202+152=625.
又∵CD=7,AD=24,
∴CD2十AD2=625,
∴AC2=CD2+AD2
∴∠D=90°.
点评:本题考查了勾股定理和勾股定理的逆定理,解题的关键是通过作辅助线可将一般的四边形转化为两个直角三角形.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

15、如图,已知四边形ABCD是等腰梯形,AB=DC,AD∥BC,PB=PC.求证:PA=PD.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知四边形ABCD内接于⊙O,A是
BDC
的中点,AE⊥AC于A,与⊙O及CB精英家教网的延长线分别交于点F、E,且
BF
=
AD
,EM切⊙O于M.
(1)求证:△ADC∽△EBA;
(2)求证:AC2=
1
2
BC•CE;
(3)如果AB=2,EM=3,求cot∠CAD的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•梧州)如图,已知:AB∥CD,BE⊥AD,垂足为点E,CF⊥AD,垂足为点F,并且AE=DF.
求证:四边形BECF是平行四边形.

查看答案和解析>>

科目:初中数学 来源:2010年湖南常德市初中毕业学业考试数学试卷 题型:047

如图,已知四边形AB∥CD是菱形,DEAB,DFBC.求证△ADE≌△CDF

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知四边形AB∥CD是菱形,DE∥AB,DFBC.求证

 


查看答案和解析>>

同步练习册答案