精英家教网 > 初中数学 > 题目详情

【题目】如图,半圆O的直径AB=10cm,D为 上一点,C为 上一点,把弓形沿直线AD翻折,C和直径AB上的点C′重合,若AC=6cm,则AD的长为

【答案】4 cm
【解析】解:连接OD,OC,作DE⊥AB于E,OF⊥AC于F,

∵∠CAD=∠BAD(折叠的性质),
=
∴点D是 的中点.
∴∠DOB=∠OAC=2∠BAD,
∴△AOF≌△OED,
∴OE=AF= AC= AC'=3cm,
在Rt△DOE中,DE= =4cm,
在Rt△ADE中,AD= =4 cm.
故答案是:4 cm.
【考点精析】解答此题的关键在于理解翻折变换(折叠问题)的相关知识,掌握折叠是一种对称变换,它属于轴对称,对称轴是对应点的连线的垂直平分线,折叠前后图形的形状和大小不变,位置变化,对应边和角相等.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】小梅家的阳台上放置了一个晒衣架如图1,图2是晒衣架的侧面示意图,A,B两点立于地面,将晒衣架稳固张开,测得张角∠AOB=62°,立杆OA=OB=140cm,小梅的连衣裙穿在衣架后的总长度为122cm,问将这件连衣裙垂挂在晒衣架上是否会拖落到地面?请通过计算说明理由(参考数据:sin59°≈0.86,cos59°≈0.52,tan59°≈1.66)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,新定义:直线l1、l、l2 , 相交于点O,长为m的线段AB在直线l2上,点P是直线l1上一点,点Q是直线l上一点.若∠AQB=2∠APB,则我们称点P是点Q的伴侣点;
(1)如图1,直线l2、l的夹角为30°,线段AB在点O右侧,且OA=1,m=2,若要使得∠APB=45°且满足点P是点Q的伴侣点,则OQ=

(2)如图2,若直线l1、l2的夹角为60°,且m=3,若要使得∠APB=30°,线段AB在直线l2上左右移动.
①当OA的长为多少时,符合条件的伴侣点P有且只有一个?请说明理由;
②是否存在符合条件的伴侣点P有三个的情况?若存在,请直接写出OA长;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,AB=AC,以AB为直径作⊙O,分别交AC,BC于点D,E.

(1)求证:BE=CE.
(2)求∠BAC=40°时,∠ADE的度数.
(3)过点E作⊙O的切线,交AB的延长线于点F,当AO=EF=2时,求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,AB=8,AD=6,点E、F分别在边CD、AB上.

(1)若DE=BF,求证:四边形AFCE是平行四边形;
(2)若四边形AFCE是菱形,求菱形AFCE的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,BC为⊙O的切线,切点为B,OC平行于AD,OA=2.

(1)求证:CD是⊙O的切线;
(2)若AD+OC=9,求CD的长.(结果保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】成都地铁规划到2020年将通车13条线路,近几年正是成都地铁加紧建设和密集开通的几年,市场对建材的需求量有所提高,根据市场调查分析可预测:投资水泥生产销售后所获得的利润y1(万元)与投资资金量x(万元)满足正比例关系y1=20x;投资钢材生产销售的后所获得的利润y2(万元)与投资资金量x(万元)满足函数关系的图象如图所示(其中OA是抛物线的一部分,A为抛物线的顶点,AB∥x轴).

(1)直接写出当0<x<30及x>30时,y2与x之间的函数关系式;
(2)某建材经销公司计划投资100万元用于生产销售水泥和钢材两种材料,若设投资钢材部分的资金量为t(万元),生长销售完这两种材料后获得的总利润为W(万元).
①求W与t之间的函数关系式;
②若要求投资钢材部分的资金量不得少于45万元,那么当投资钢材部分的资金量为多少万元时,获得的总利润最大?最大总利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】学了统计知识后,小刚就本班同学上学“喜欢的出行方式”进行了一次调查.图(1)和图(2)是他根据采集的数据绘制的两幅不完整的统计图,请根据图中提供的信息解答以下问题:

(1)补全条形统计图,并计算出“骑车”部分所对应的圆心角的度数;
(2)如果全年级共600名同学,请估算全年级步行上学的学生人数;
(3)若由3名“喜欢乘车”的学生,1名“喜欢步行”的学生,1名“喜欢骑车”的学生组队参加一项活动,欲从中选出2人担任组长(不分正副),列出所有可能的情况,并求出2人都是“喜欢乘车”的学生的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】杰瑞公司成立之初投资1500万元购买新生产线生产新产品,此外,生产每件该产品还需要成本60元.按规定,该产品售价不得低于100元/件且不得超过180元/件,该产品销售量y(万件)与产品售价x(元)之间的函数关系如图所示.

(1)求y与x之间的函数关系式,并写出x的取值范围;
(2)第一年公司是盈利还是亏损?求出当盈利最大或者亏损最小时的产品售价;
(3)在(2)的前提下,即在第一年盈利最大或者亏损最小时,第二年公司重新确定产品售价,能否使两年共盈利达1340万元?若能,求出第二年产品售价;若不能,请说明理由.

查看答案和解析>>

同步练习册答案