如图1,在平面直角坐标系中,矩形OABC的顶点O在坐标原点,顶点A、C分别在x轴、y轴的正半轴上,且OA=2,OC=1,矩形对角线AC、OB相交于E,过点E的直线与边OA、BC分别相交于点G、H.
(1)①直接写出点E的坐标: .
②求证:AG=CH.
(2)如图2,以O为圆心,OC为半径的圆弧交OA与D,若直线GH与弧CD所在的圆相切于矩形内一点F,求直线GH的函数关系式.
(3)在(2)的结论下,梯形ABHG的内部有一点P,当⊙P与HG、GA、AB都相切时,求⊙P的半径.
解:(1)① (1,)。
②证明:∵四边形OABC是矩形,∴CE=AE,BC∥OA。∴∠HCE=∠GAE。
∵在△CHE和△AGE中,∠HCE=∠GAE, CE=AE,∠HEC=∠G EA,
∴△CHE≌△AGE(ASA)。∴AG=CH。
(2)连接DE并延长DE交CB于M,连接AC, 则由矩形的性质,点E在AC上。
∵DD=OC=1=OA,∴D是OA的中点。
∵在△CME和△ADE中,
∠MCE=∠DAE, CE=AE,∠MEC=∠DEA,
∴△CME≌△ADE(ASA)。∴CM=AD=2-1=1。
∵BC∥OA,∠COD=90°,∴四边形CMDO是矩形。∴MD⊥OD,MD⊥CB。
∴MD切⊙O于D。
∵HG切⊙O于F,E(1,),∴可设CH=HF=x,FE=ED==ME。
在Rt△MHE中,有MH2+ME2=HE2,即(1-x)2+()2=(+x)2,解得x=。
∴H(,1),OG=2-。∴G(,0)。
设直线GH的解析式是:y=kx+b,
把G、H的坐标代入得:,解得:。
∴直线GH的函数关系式为。
(3)连接BG,
∵在△OCH和△BAG中,
CH=AG,∠HCO=∠GAB,OC=AB,
∴△OCH≌△BAG(SAS)。∴∠CHO=∠AGB。
∵∠HCO=90°,∴HC切⊙O于C,HG切⊙O于F。
∴OH平分∠CHF。∴∠CHO=∠FHO=∠BGA。
∵△CHE≌△AGE,∴HE=GE。
∵在△HOE和△GBE中,HE=GE,∠HEO=∠GEB,OE=BE,
∴△HOE≌△GBE(SAS)。∴∠OHE=∠BGE。21世纪教育网
∵∠CHO=∠FHO=∠BGA,∴∠BGA=∠BGE,即BG平分∠FGA。
∵⊙P与HG、GA、AB都相切,∴圆心P必在BG上。
过P做PN⊥GA,垂足为N,则△GPN∽△GBA。∴。
设半径为r,则,解得。
答:⊙P的半径是.
解析
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
2 |
2 |
2 |
2 |
2 |
查看答案和解析>>
科目:初中数学 来源:同步轻松练习 八年级 数学 上 题型:059
学校阅览室有能坐4人的方桌,如果多于4人,就把方桌拼成一行,2张方桌拼成一行能坐6人(如图)
(1)按照这种规定填写下表:
(2)根据表中的数据,将s作为纵坐标,n作为横坐标,在如图所示的平面直角坐标系中找出相应各点.
(3)请你猜一猜上述各点会在某一个函数图象上吗?如果在某一函数图象上,求出该函数的解析式,并利用你探求的结果,求出当n=10时,s的值.
查看答案和解析>>
科目:初中数学 来源:2013-2014学年北京海淀区九年级第一学期期中测评数学试卷(解析版) 题型:解答题
阅读下面的材料:
小明在研究中心对称问题时发现:
如图1,当点为旋转中心时,点绕着点旋转180°得到点,点再绕着点旋转180°得到点,这时点与点重合.
如图2,当点、为旋转中心时,点绕着点旋转180°得到点,点绕着点旋转180°得到点,点绕着点旋转180°得到点,点绕着点旋转180°得到点,小明发现P、两点关于点中心对称.
(1)请在图2中画出点、, 小明在证明P、两点关于点中心对称时,除了说明P、、三点共线之外,还需证明;
(2)如图3,在平面直角坐标系xOy中,当、、为旋转中心时,点绕着点旋转180°得到点;点绕着点旋转180°得到点;点绕着点旋转180°得到点;点绕着点旋转180°得到点. 继续如此操作若干次得到点,则点的坐标为(),点的坐为.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com