精英家教网 > 初中数学 > 题目详情

【题目】已知反比例函数y= 的图象经过点A(﹣ ,1).
(1)试确定此反比例函数的解析式;
(2)点O是坐标原点,将线段OA绕O点顺时针旋转30°得到线段OB.判断点B是否在此反比例函数的图象上,并说明理由;
(3)已知点P(m, m+6)也在此反比例函数的图象上(其中m<0),过P点作x轴的垂线,交x轴于点M.若线段PM上存在一点Q,使得△OQM的面积是 ,设Q点的纵坐标为n,求n2﹣2 n+9的值.

【答案】
(1)

解:由题意得1= ,解得k=﹣

∴反比例函数的解析式为y=﹣


(2)

解:过点A作x轴的垂线交x轴于点C.

在Rt△AOC中,OC= ,AC=1,

∴OA= =2,∠AOC=30°,

∵将线段OA绕O点顺时针旋转30°得到线段OB,

∴∠AOB=30°,OB=OA=2,

∴∠BOC=60°.

过点B作x轴的垂线交x轴于点D.

在Rt△BOD中,BD=OBsin∠BOD= ,OD= OB=1,

∴B点坐标为(﹣1, ),

将x=﹣1代入y=﹣ 中,得y=

∴点B(﹣1, )在反比例函数y=﹣ 的图象上


(3)

解:由y=﹣ 得xy=﹣

∵点P(m, m+6)在反比例函数y=﹣ 的图象上,其中m<0,

∴m( m+6)=﹣

∴m2+2 m+1=0,

∵PQ⊥x轴,∴Q点的坐标为(m,n).

∵△OQM的面积是

OMQM=

∵m<0,∴mn=﹣1,

∴m2n2+2 mn2+n2=0,

∴n2﹣2 n=﹣1,

∴n2﹣2 n+9=8.


【解析】(1)由于反比例函数y= 的图象经过点A(﹣ ,1),运用待定系数法即可求出此反比例函数的解析式;(2)首先由点A的坐标,可求出OA的长度,∠AOC的大小,然后根据旋转的性质得出∠AOB=30°,OB=OA,再求出点B的坐标,进而判断点B是否在此反比例函数的图象上;(3)把点P(m, m+6)代入反比例函数的解析式,得到关于m的一元二次方程;根据题意,可得Q点的坐标为(m,n),再由△OQM的面积是 ,根据三角形的面积公式及m<0,得出mn的值,最后将所求的代数式变形,把mn的值代入,即可求出n2﹣2 n+9的值.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,抛物线C1:y1=tx2﹣1(t>0)和抛物线C2:y2=﹣4(x﹣h)2+1(h≥1).

(1)两抛物线的顶点A、B的坐标分别为
(2)设抛物线C2的对称轴与抛物线C1交于点N,则t为何值时,A、B、M、N为顶点的四边形是平行四边形.
(3)设抛物线C1与x轴的左交点为点E,抛物线C2与x轴的右边交点为点F,试问,在第(2)问的前提下,四边形AEBF能否为矩形?若能,求出h值;若不能,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】平行四边形ABCD中,∠ABC的角平分线BE将边AD分成长度为5cm6cm的两部分,则平行四边形ABCD的周长为__________________cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了进一步普及足球知识,传播足球文化,我市举行了“足球进校园”知识竞赛活动,为了解足球知识的普及情况,随机抽取了部分获奖情况进行整理,得到下列不完整的统计图表:

获奖等次

频数

频率

一等奖

10

0.05

二等奖

20

0.10

三等奖

30

b

优胜奖

a

0.30

鼓励奖

80

0.40

请根据所给信息,解答下列问题:
(1)a= , b= , 且补全频数分布直方图
(2)若用扇形统计图来描述获奖分布情况,问获得优胜奖对应的扇形圆心角的度数是多少?
(3)若我市初中生共有16000人,竞赛活动获奖率为40%,获三等奖以上的学生表示对“足球比较喜欢”,请你估计我市初中生对“足球比较喜欢”的有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图ABC的两条外角平分线BP,CP相交于点P,PEACAC的延长线于点E.ABC的周长为11,PE=2,SBPC=2,则SABC________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图22,在∠AOB的两边OA,OB上分别取OM=ON,OD=OE,DNEM相交于点C.求证:点C在∠AOB的平分线上.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,O为直线AB上一点,∠AOC=50°,OD平分∠AOC,DOE=90°.

(1)请你数一数,图中有多少个小于平角的角;

(2)求出∠BOD的度数;

(3)请通过计算说明OE是否平分∠BOC.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将两块相同的三角板(含30°角)按图中所示位置摆放,若BECFD,ACBEM,ABCFN,则下列结论中错误的是(  )

A. ∠EAC=∠FAB B. ∠EAF=∠EDF C. △ACN≌△ABM D. AM=AN

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某路段某时段用雷达测速仪随机监测了200辆汽车的时速,得到如下频数分布表(不完整):注:30﹣40为时速大于或等于30千米而小于40千米,其它类同.

数据段

频数

30~40

10

_______

36

50~60

80

60~70

_____

70~80

20

(1)请你把表中的数据填写完整;

(2)补全频数分布直方图;

(3)如果此路段该时间段经过的车有1000辆.估计约有多少辆车的时速大于或等于 60千米.

查看答案和解析>>

同步练习册答案