精英家教网 > 初中数学 > 题目详情
如图,四边形ABCD是一防洪堤坝的横截面,AE⊥CD,BF⊥CD且AE=BF,∠D=∠C,问:AD与BC相等?说明你的理由.
分析:由AE⊥CD,BF⊥CD可得∠AED=∠BFC=90°,而AE=BF,∠D=∠C,根据全等三角形的判定得到Rt△AED≌Rt△BFC,根据全等三角形的性质即可得到AD=BC.
解答:解:AD与BC相等.理由如下:
∵AE⊥CD,BF⊥CD,
∴∠AED=∠BFC=90°,
在△AED和△BFC中,
∠AED=∠BFC
∠D=∠C
AE=BF

∴Rt△AED≌Rt△BFC,
∴AD=BC.
点评:本题考查了全等三角形的判定与性质:有两组对应角相等,并且有一组对应边相等的两个三角形全等;全等三角形的对应边相等.也考查了垂线的定义.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,四边形ABCD的对角线AC与BD互相垂直平分于点O,设AC=2a,BD=2b,请推导这个四边形的性质.(至少3条)
(提示:平面图形的性质通常从它的边、内角、对角线、周长、面积等入手.)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD的对角线AC、BD交于点P,过点P作直线交AD于点E,交BC于点F.若PE=PF,且AP+AE=CP+CF.
(1)求证:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,四边形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD为正方形,E是BC的延长线上的一点,且AC=CE,求∠DAE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD是正方形,点E是BC的中点,∠AEF=90°,EF交正方形外角的平分线CF于F.

(I)求证:AE=EF;
(Ⅱ)若将条件中的“点E是BC的中点”改为“E是BC上任意一点”,其余条件不变,则结论AE=EF还成立吗?若成立,请证明;若不成立,请说明理由.

查看答案和解析>>

同步练习册答案