精英家教网 > 初中数学 > 题目详情
精英家教网如图,在梯形ABCD中,AB∥DC,∠D=90°,AD=DC=4,AB=1,F为AD的中点,则点F到BC的距离是(  )
A、2B、4C、8D、1
分析:连接BF,CF,过A作AE∥BC,过F作FG⊥BC于G,此时AE将直角梯形分为一个平行四边形和一个直角三角形,从而可求得AE,BC,AF,CF,BF的长,再根据面积公式即可求得FG的长.
解答:精英家教网解:连接BF,CF,过A作AE∥BC,过F作FG⊥BC于G,
则四边形ABCE是平行四边形,AE=BC,AB=CE=1,DE=DC-CE=4-1=3,
∵∠D=90°,
∴△ADE是直角三角形,
由勾股定理得AE=
AD2+DE2
=
42+32
=5,
∵AE=BC,
∴BC=5,
∵AB∥DC,∠D=90°,F为AD的中点,AD=DC=4,AB=1,
∴AF=FD=
1
2
AD=
1
2
×4=2,△DCF与△ABF是直角三角形,CF=
CD2+DF2
=
42+22
=2
5

BF=
AB2+AF2
=
12+22
=
5

在△BFC中,
∵BF2+CF2=(
5
2+(2
5
2=25=BC2=52=25,
∴△BFC是直角三角形;
∴S△BFC=
1
2
BF•CF=
1
2
BC•FG,即
5
•2
5
=5FG,FG=2.
故选A.
点评:此题较复杂,解答此题的关键是作出辅助线,利用平行四边形的性质,勾股定理求出△BCF是直角三角形,再利用三角形的面积公式求出△BCF的高即可.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

11、如图,在梯形ABCD中,AB∥CD,对角线AC、BD交于点O,则S△AOD
=
S△BOC.(填“>”、“=”或“<”)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,在梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=CD=10.
求:梯形ABCD的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在梯形ABCD中,AD∥BC,AB⊥AD,对角线BD⊥DC.
(1)求证:△ABD∽△DCB;
(2)若BD=7,AD=5,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

20、如图,在梯形ABCD中,AD∥BC,并且AB=8,AD=3,CD=6,并且∠B+∠C=90°,则梯形面积S梯形ABCD=
38.4

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在梯形ABCD中,AD∥BC,∠BCD=90°,以CD为直径的半圆O切AB于点E,这个梯形的面积为21cm2,周长为20cm,那么半圆O的半径为(  )
A、3cmB、7cmC、3cm或7cmD、2cm

查看答案和解析>>

同步练习册答案