精英家教网 > 初中数学 > 题目详情

【题目】如图,函数y=kx+bk≠0)的图象经过点B20),与函数y=2x的图象交于点A,则不等式0kx+b2x的解集为(  )

A. B. C. D.

【答案】A

【解析】

先利用正比例函数解析式确定A点坐标,然后观察函数图象得到,当x1时,直线y=2x都在直线y=kx+b的上方,当x2时,直线y=kx+bx轴上方,于是可得到不等式0kx+b2x的解集.

A点坐标为(x2),

Ax2)代入y=2x

2x=2,解得x=1

A点坐标为(12),

所以当x1时,2xkx+b

∵函数y=kx+bk≠0)的图象经过点B20),

x2时,kx+b0

∴不等式0kx+b2x的解集为1x2

故选:A

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知:如图,抛物线y=x2+bx+cx轴交于A(-10)B两点(AB左),y轴交于点C0-3).

1)求抛物线的解析式;

2)若点D是线段BC下方抛物线上的动点,求四边形ABCD面积的最大值;

3)若点Ex轴上,点P在抛物线上.是否存在以BCEP为顶点且以BC为一边的平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某学校九年级学生举行朗诵比赛,全年级学生都参加,学校对表现优异的学生进行表彰,设置一、二、三等奖各进步奖共四个奖项,赛后将九年级(1)班的获奖情况绘制成如图所示的两幅不完整的统计图,请根据图中的信息,解答下列问题:

(1)九年级(1)班共有 名学生;

(2)将条形图补充完整:在扇形统计图中,“二等奖”对应的扇形的圆心角度数是

(3)如果该九年级共有1250名学生,请估计荣获一、二、三等奖的学生共有多少名.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】感知:如图①ABC是等腰直角三角形,∠ACB=90°,正方形CDEF的顶点DF分别在边ACBC上,易证:AD=BF(不需要证明);

探究:将图①的正方形CDEF绕点C顺时针旋转αα90°),连接ADBF,其他条件不变,如图②,求证:AD=BF

应用:若α=45°CD=BE=1,如图③,则BF=   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知F是平行四边形ABCD的边DC中点,若三角形EFCABEAFD的面积分别为3平方厘米,4平方厘米,5平方厘米,平行四边形ABCD的面积是整数。则三角形AEF的面积为_________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,抛物线y= x2+bx+c与x轴、y轴分别相交于点A 1,0)、B(0,3)两点,其顶点为D

(1)求这条抛物线的解析式;

(2)若抛物线与x轴的另一个交点为E. 求△ODE的面积;抛物线的对称轴上是否存在点P使得△PAB的周长最短。若存在请求出P点的坐标,若不存在说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,一次函数ykx+b的图象与反比例函数y的图象交于MN两点.

1)根据图中条件求出反比例函数和一次函数的解析式;

2)连结OMON,求MON的面积;

3)根据图象,直接写出使一次函数的值大于反比例函数的值的x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知一次函数y=x+4的图象与二次函数y=ax(x﹣2)的图象相交于A(﹣1,b)和B,点P是线段AB上的动点(不与A、B重合),过点P作PC⊥x轴,与二次函数y=ax(x﹣2)的图象交于点C.

(1)求a、b的值及B点的坐标;

(2)求线段PC长的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,,点分别在边上,且,连结

1)求证:

2)判断的形状,并说明理由.

3)若,当_______时,.请说明理由.

查看答案和解析>>

同步练习册答案