精英家教网 > 初中数学 > 题目详情

【题目】如图,在等边△ABC中,D是边AC上一点,连接BD,将△BCD绕点B逆时针旋转60°,得到△BAE,连接ED,下列结论正确的有(  )个.

①△BED是等边三角形;②AEBC ③△ADE的周长等于BD+BC;④∠ADE=∠DBC

A.1B.2C.3D.4

【答案】D

【解析】

根据旋转的性质得BE=BDAE=CD,∠DBE=60°,于是可判断△BDE为等边三角形,则有DE=BD,所以△AED的周长=BD+AC,且∠C=BAE=ABC =60°得①②③正确;根据三角形内角和定理得∠ADE=ABE,结合∠ABE+ABD=DBC+ABD=60°,可得④正确.

∵在等边△ABC中,△BCD绕点B逆时针旋转60°得到△BAE
BE=BDAE=CD,∠DBE=60,∠C=BAE=60°
∴△BDE为等边三角形,∠ABC=BAE=60°
DE=BDAEBC
∴△AED的周长=DE+AE+AD=BD+CD+AD=BD+AC= BD+BC

故①②③正确

△ABC,△BDE为等边三角形,

∴∠BED=BAC=60°

又∵对顶角相等

∴∠ADE=ABE

∵∠ABE+ABD=DBC+ABD=60°

∴∠ADE=∠DBC

故④正确

故选:D

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,点是坐标原点,点的坐标是,点的坐标是,点的坐标是,且满足

1)请用含的代数式分别表示

2)若,求直线轴的交点的坐标;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下列材料:如图(1),在四边形ABCD中,若AB=ADBC=CD,则把这样的四边形称之为筝形.

(1)写出筝形的两个性质(定义除外)

;②

(2)如图(2),在平行四边形ABCD中,点EF分别在BCCD上,且AE=AF,∠AEC=AFC.求证:四边形AECF是筝形.

(3)如图(3),在筝形ABCD中,AB=AD=26BC=DC=25AC=17,求筝形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某大型超市从生产基地购进一批水果,运输过程中质量损失10%,假设不计超市其他费用,如果超市要想至少获得20%的利润,那么这种水果的售价在进价的基础上应至少提高【 】

A.40% B.33.4% C.33.3% D.30%

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(【材料阅读】阅读下列一段文字,然后回答下列问题.

已知平面内两点Mx1y1)、Nx2y2),则这两点间的距离可用下列公式计算:

MN=

例如:已知P31)、Q12),则这两点间的距离PQ==

直接应用

1)已知A2-3)、B-45),试求AB两点间的距离;

2)已知ABC的顶点坐标分别为A04)、B﹣12)、C42),你能判定ABC的形状吗?请说明理由.

深度应用

3如图,在平面直角坐标系xOy中,二次函数y=x2﹣4的图象与x轴相交于两点AB(点A在点B的左边)

求点AB的坐标;

设点Pmn)是以点C34)为圆心、1为半径的圆上一动点,求PA2+PB2的最大值;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】等边三角形ABC中,DE分别是ABBC上的点,且ADBEAECD相交于点PCFAE

1)求∠CPE的度数;

2)求证:PFPC

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(模型建立)

1)如图1,等腰RtABC中,∠ACB90°CBCA,直线ED经过点C,过点AADED于点D,过点BBEED于点E,求证:△BEC≌△CDA

(模型应用)

2)如图2,已知直线l1yx+3x轴交于点A,与y轴交于点B,将直线l1绕点A逆时针旋转45°至直线l2;求直线l2的函数表达式;

3)如图3,平面直角坐标系内有一点B3,﹣4),过点BBAx轴于点ABCy轴于点C,点P是线段AB上的动点,点D是直线y=﹣2x+1上的动点且在第四象限内.试探究△CPD能否成为等腰直角三角形?若能,求出点D的坐标,若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数的图象与反比例函数的图象交于二、四象限内的AB两点,与x轴交于C点,点A的坐标为(- 3,4),点B的坐标为(6,n).

(1)求该反比例函数和一次函数的解析式;

(2)连接OB,求△AOB 的面积;

(3)在x轴上是否存在点P,使△APC是直角三角形. 若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线ABCD,直线l与直线ABCD相交于点EF,点P是射线EA上的一个动点(不包括端点E),将△EPF沿PF折叠,使顶点E落在点Q处.

⑴若∠PEF48°,点Q恰好落在其中的一条平行线上,则∠EFP的度数为

⑵若∠PEF75°,∠CFQPFC,求∠EFP的度数.

查看答案和解析>>

同步练习册答案